: model from Evans et al 2013, transferred from GENESIS to NEURON by Beining et al (2016), "A novel comprehensive and consistent electrophysiologcal model of dentate granule cells"
: also added Calcium dependent inactivation
NEURON {
SUFFIX Cav13
USEION ca READ cai, eca WRITE ica :,cai,cao...., cai, cao
USEION lca WRITE ilca VALENCE 0
RANGE gbar, g
GLOBAL kf, h2Tau, VDI
}
UNITS {
(molar) = (1/liter)
(mM) = (millimolar)
(mV) = (millivolt)
(mA) = (milliamp)
(S) = (siemens)
(um) = (micrometer)
}
ASSIGNED {
ilca (mA/cm2) : instantaneous calcium current of l-type calcium channel
v (mV)
ica (mA/cm2)
g (S/cm2)
eca (mV)
diam (um)
cai (mM)
mInf (1)
hInf (1)
h2Inf (1)
mTau (ms)
}
PARAMETER {
hTau = 44.3 (ms)
h2Tau = 0.5 (ms)
gbar = 0 (S/cm2)
vshift = 0 (mV)
:parameters for calcium-dep inactivation (CDI)
:f= (0.001/(0.001+[Ca]))Poirazi CA1 2003
:f= (0.0005/(0.0005+[Ca])) Rhodes and Llinas 2001 Cort Pyr
kf = 0.0005 (mM) : factor in inactivation, the higher the less sensitive. others uses 0.0002.. standen and stanfield use 0.001mM in original paper
VDI = 1
}
STATE {m h h2} :a b :cai (mM) cao (mM)
INITIAL {
rates()
m = mInf
h = hInf
h2 = h2Inf
}
BREAKPOINT {
rates()
SOLVE state METHOD cnexp
g = gbar*m*h*h2 : h2 calcium dependent inactivation is taken from santhakumar 05.. tjos assumes instantaneous calcium inactivation
ica = (g)*(v - eca) :
ilca = ica
}
DERIVATIVE state { : exact when v held constant integrates over dt step
m' = (mInf-m) / mTau
h' = (hInf-h) / hTau
h2' = (h2Inf-h2)/h2Tau
}
PROCEDURE rates(){
LOCAL mA,mB
mA = (39800*( v + 67.24))/( exp ( (v + 67.24)/15.005) - 1.0)
mB = 3500* exp(v/31.4)
mTau = (1/(mA + mB))
mInf = 1.0/((exp ( (v - (-40.0))/(-5))) + 1.0)
hInf = VDI/( (exp ( (v - (-37))/(5))) + 1.0) + (1-VDI)
:h2 = caIn(cai)
h2Inf = kf/(kf+cai)
}