:Comment :
: from Beining et al (2016), "A novel comprehensive and consistent electrophysiologcal model of dentate granule cells"
NEURON {
SUFFIX Kv34
USEION k READ ek WRITE ik
RANGE gkbar, gk, ik
GLOBAL scale_a, Rinact, ksl, vshift,ak,ad
}
UNITS {
(S) = (siemens)
(mV) = (millivolt)
(mA) = (milliamp)
}
PARAMETER {
gkbar = 0.0013 (S/cm2)
vshift = 0 (mV)
vshifttau1 = 0 (mV)
vshifttau2 = 0 (mV)
Rinact = 0.1
kmg = 16
scale_a = 4
ksl = 0.5
ak = -9.7 (mV)
ad = 14 (mV)
}
ASSIGNED {
v (mV)
ek (mV)
ik (mA/cm2)
gk (S/cm2)
mInf
mTau (ms)
hInf
hTau (ms)
am (/ms)
bm (/ms)
}
STATE {
m
h
}
BREAKPOINT {
SOLVE states METHOD cnexp
gk = gkbar*m*h
ik = gk*(v-ek)
}
DERIVATIVE states {
rates()
m' = (mInf-m)/mTau
h' = (hInf-h)/hTau
}
INITIAL{
rates()
m = mInf
h = hInf
}
PROCEDURE rates(){
UNITSOFF
:mInf = 1/(1+exp(((v -(10 ))/(-5))) + exp(((v -(45+vshift ))/(kmg)))) :this is taken from Schroeter (+ mg block)
mInf = 1/(1+exp(((v -(ad+vshift))/(ak)))) : This is taken from Schroeter.. is also perfect in between Kv3.3 and 3.4 (Rudy Review)
::mInf = 1/(1+exp(((v -(5))/(-5))) + exp(((v -(55))/(kmg)))) : this is taken for the model
: mTau from Rudy
am = scale_a* 1/16 * exp(0.1*ksl*(v-38))
bm = scale_a *1/16 * exp(-0.1*ksl*(v+45)) : -0.16...v+27
mTau = 1/(am + bm ) :
hInf = Rinact + (1-Rinact)/(1+exp(((v -(-29.7 ))/(12.2)))) : leicht abgewandelt von Schroeter
hTau = 250/(1+exp(((v -(-10))/(17))))+ 8 : hTau Rudy3
UNITSON
}