#!/usr/bin/env python
import LFPy
import neuron
import numpy as np
import matplotlib.pyplot as plt
neuron.h("forall delete_section()")
cell = LFPy.TemplateCell(morphology='soma.hoc',
templatefile='TC_GH2.hoc',
templatename='sTC',
templateargs=None,
tstartms=0,
tstopms=5000,
v_init=-70,
passive=False,
extracellular=False,
nsegs_method=None,
)
#putative RGC spike trains
spiketrains = [
np.random.rand(100).cumsum()*50+1000,
]
#container for synapses:
synapses = []
for i, spiketrain in enumerate(spiketrains):
synapses.append(LFPy.Synapse(cell, idx=0, syntype='Exp2Syn',
weight=0.01, tau1=0.1, tau2=1, delay=1, ))
synapses[i].set_spike_times(spiketrain)
##IClamps from original files:
#stim = LFPy.StimIntElectrode(cell, idx=0, pptype='IClamp',
# delay=2000, dur=1000, amp=0.045)
#stim2 = LFPy.StimIntElectrode(cell, idx=0, pptype='IClamp',
# delay=0, dur=5000, amp=0)
#set the temperature otherwise we get wrong responses
neuron.h.celsius=36.0
#run the sim:
cell.simulate()
plt.plot(cell.tvec, cell.somav)
plt.show()