#!/usr/bin/env python
# -*- coding: utf-8 -*-
## Area-response curves of the neurons located in the same position for all layers.
import numpy as np
import matplotlib.pyplot as plt
import sys,os,os.path
import scipy.fftpack
# Data path
data_path = "/home/pablo/Desktop/Biophysical_thalamocortical_system/thalamocortical/results/"
# Number of neurons (all layers except INs)
N = 10.0
# Stimulus diameters
stimulus = np.arange(0.0,10.2,0.2)
# Folder
folder = "retina/disk/ON"
# Type of stimulus (disk/patch)
type = "disk"
# Neuron type to plot
#IDs = ["RC-ON"]
IDs = [""] # Ganglion cells
# Simulation parameters
tsim = 1000.0
binsize = 5.0
numbertrials =5.0
# Interval to average spot response
spot_interval = [500.0,1000.0]
# Cell ID
cell_number = 55 # all layers except INs
cell_number_IN = 12
# Metrics: center-surround antagonism
def alphavr(response,stimulus):
rc = np.max(response)
rc_pos = np.argmax(response)
rcs = np.min(response[rc_pos:])
rcs_pos = np.argmin(response[rc_pos:])+rc_pos
alpha = 100.0 * (rc - rcs) / (rc - response[0])
print("Stimulus[rc] = %s, rc = %s" % (stimulus[rc_pos],rc))
print("Stimulus[rcs] = %s, rcs = %s" % (stimulus[rcs_pos],rcs))
print("alpha_vr = %s" % alpha)
# Load PST
def loadPST(stim,N,tsim,binsize,neuron,add_path):
PST_avg = np.zeros((int(N*N),int(tsim/binsize)))
lines = [line.rstrip('\n') for line in open(data_path+add_path+"/stim"+str(stim)+"/PST"+neuron, "r")]
for n in np.arange(len(lines)):
h = lines[int(n)].split(',')
for pos in np.arange(0,tsim/binsize):
PST_avg[int(n),int(pos)] = float(h[int(pos)])
return PST_avg
# Create arrays of all PSTs
def createPST(cellID,stimulus,N,tsim,binsize,add_path):
PST = []
for s in stimulus:
PST.append(loadPST(s,N,tsim,binsize,cellID,add_path))
return PST
# Fourier fundamental frequency
def FFT(PST,cell_n,numbertrials):
# Averaged response among trials
response = PST[cell_n,:]/numbertrials
# Number of samplepoints
N = len(response)
# Bin size and grating frequency
resolution = binsize # ms
temporal_frequency = 1.0 # Hz
# Sample spacing
T = resolution*0.001 # s
# FFT
yf = scipy.fftpack.fft(response)
yf = 2.0/N * np.abs(yf[:N//2])
xf = np.array(np.linspace(0.0, 1.0/(2.0*T), N/2))
main_freq = np.where(xf>=temporal_frequency)[0][0]
# Amplitude of F1
return yf[main_freq]
# Area-response curve
def area_response(PSTs,cell_n):
response = []
# Estimation of spontaneous rate
sp_rate = np.sum((PSTs[0])[cell_n,:])/(len((PSTs[0])[cell_n,:])*numbertrials)
for PST in PSTs:
if(type == "disk"):
PST = PST[cell_n,int(spot_interval[0]/binsize):int(spot_interval[1]/binsize)]/numbertrials
response.append(np.sum(PST)/len(PST))
else:
# FFT (amplitude of F1)
# response.append(FFT(PST,cell_n,numbertrials) + sp_rate)
# Mean firing rate of the rectified response over one cycle.
# This metric is correlated with F1 (the average value of a sine wave
# of voltage or current is 0.637 times the peak value)
# PST = PST[cell_n,int(250.0/binsize):int(1250.0/binsize)]/numbertrials
# response.append( np.mean(np.abs(PST - sp_rate)) + sp_rate)
# DC response is calculated for each diameter as the mean response over
# a time interval
PST = PST[cell_n,int(250.0/binsize):int(1250.0/binsize)]/numbertrials
response.append( np.mean(np.abs(PST - np.mean(PST))) + np.mean(PST))
return response
# 7-point interpolation
def interpolation(response,stimulus):
new_response = [response[i]+response[i+1]+response[i+2]+response[i+3]+\
response[i+4]+response[i+5]+response[i+6] for i in np.arange(len(stimulus)-6)]
new_response = np.array(new_response)/7.0
xdata = stimulus[3:len(stimulus)-3]
# To add d = 0
xdata = np.concatenate((np.array([0.0]),np.array(xdata)))
new_response = np.concatenate((np.array([response[0]]),new_response))
return xdata,new_response
# Plots
fig = plt.figure()
fig.subplots_adjust(hspace=0.4)
Vax = plt.subplot2grid((2,1), (0,0))
Gax = plt.subplot2grid((2,1), (1,0))
for ID in IDs:
newPST = createPST(ID,stimulus,N,tsim,binsize,folder)
# Response
if(ID == "IN-ON" or ID== "IN-OFF"):
response = area_response(newPST,cell_number_IN)
else:
response = area_response(newPST,cell_number)
# Interpolated response
xdata,new_response = interpolation(response,stimulus)
# Absolute response
Vax.plot(xdata,new_response,label = ID)
# Save to file
# np.savetxt('/home/pablo/Desktop/data/patch_absolute.out',new_response,delimiter=',')
# Calculate metrics
print(ID)
alphavr(new_response,xdata)
# Normalized response
new_response -= np.min(new_response)
Gax.plot(xdata,new_response/np.max(new_response),label = ID)
# Save to file
# np.savetxt('/home/pablo/Desktop/data/patch_norm.out',
# new_response/np.max(new_response),delimiter=',')
Vax.legend(loc=1)
Vax.set_ylabel('Firing rate (Hz)')
Gax.set_ylabel('Normalized firing rate')
Gax.set_xlabel('Spot/patch diameter (deg)')
plt.show()