#!/usr/bin/env python
# -*- coding: utf-8 -*-
## Area-response curves for different corticothalamic synapse weights and spatial
## connectivity profiles of cortical feedback
import numpy as np
import matplotlib.pyplot as plt
import sys,os,os.path
import scipy.fftpack
from scipy.ndimage.filters import gaussian_filter
# Data path
data_path = "/home/pablo/Desktop/Biophysical_thalamocortical_system/thalamocortical/results/"
# Number of neurons (all layers except INs)
N = 10.0
# Stimulus diameters
stimulus = np.arange(0.0,10.2,0.2)
# Folder
folder = "retina/disk/ON"
# Type of stimulus (disk/patch)
type = "disk"
IDs = ["RC-ON"]
# Simulation parameters
tsim = 1000.0
binsize = 5.0
numbertrials =100.0
# Interval to average disk response
spot_interval = [500.0,1000.0]
# Combinations
combinations = ["comb0","comb1","comb2","comb3",
"comb4","comb5","comb6","comb7",
"comb8","comb9","comb10","comb11",
"comb12","comb13","comb14","comb15"]
# Cells to plot
cell_number = 55
if os.path.isdir("tmp") == False:
os.system("mkdir tmp")
# Metrics: center-surround antagonism
def alphavr(response,stimulus):
rc = np.max(response)
rc_pos = np.argmax(response)
rcs = np.min(response[rc_pos:])
rcs_pos = np.argmin(response[rc_pos:])+rc_pos
alpha = 100.0 * (rc - rcs) / (rc - response[0])
print("Stimulus[rc] = %s, rc = %s" % (stimulus[rc_pos],rc))
print("Stimulus[rcs] = %s, rcs = %s" % (stimulus[rcs_pos],rcs))
print("alpha_vr = %s" % alpha)
return stimulus[rc_pos], alpha
# Load PST
def loadPST(stim,N,tsim,binsize,neuron,add_path):
PST_avg = np.zeros((int(N*N),int(tsim/binsize)))
lines = [line.rstrip('\n') for line in open(data_path+add_path+"/stim"+str(stim)+"/PST"+neuron, "r")]
for n in np.arange(len(lines)):
h = lines[int(n)].split(',')
for pos in np.arange(0,tsim/binsize):
PST_avg[int(n),int(pos)] = float(h[int(pos)])
return PST_avg
# Create arrays of all PSTs
def createPST(cellID,stimulus,N,tsim,binsize,add_path):
PST = []
for s in stimulus:
PST.append(loadPST(s,N,tsim,binsize,cellID,add_path))
return PST
# Area-response curve
def area_response(PSTs,cell_n):
response = []
# Estimation of spontaneous rate
sp_rate = np.sum((PSTs[0])[cell_n,:])/(len((PSTs[0])[cell_n,:])*numbertrials)
for PST in PSTs:
if(type == "disk"):
PST = PST[cell_n,int(spot_interval[0]/binsize):int(spot_interval[1]/binsize)]/numbertrials
response.append(np.sum(PST)/len(PST))
else:
# DC response is calculated for each diameter as the mean response over
# a time interval
PST = PST[cell_n,int(250.0/binsize):int(1250.0/binsize)]/numbertrials
response.append( np.mean(np.abs(PST - np.mean(PST))) + np.mean(PST))
return response
# 7-point interpolation
def interpolation(response,stimulus):
new_response = [response[i]+response[i+1]+response[i+2]+response[i+3]+\
response[i+4]+response[i+5]+response[i+6] for i in np.arange(len(stimulus)-6)]
new_response = np.array(new_response)/7.0
xdata = stimulus[3:len(stimulus)-3]
# For d = 0
xdata = np.concatenate((np.array([0.0]),np.array(xdata)))
new_response = np.concatenate((np.array([response[0]]),new_response))
return xdata,new_response
# Plots
fig1 = plt.figure(1)
fig1.subplots_adjust(hspace=0.4)
fig2 = plt.figure(2)
fig2.subplots_adjust(hspace=0.4)
NoFB_response_abs = []
NoFB_response_norm = []
row = 0
col = 0
alpha_table = np.zeros((4,4))
dc_table = np.zeros((4,4))
for cc in combinations:
print(cc)
for ID in IDs:
# PSTs
PST = createPST(ID,stimulus,N,tsim,binsize,folder+str(cc))
# Responses
response = area_response(PST,cell_number)
# Interpolated responses
xdata,new_response = interpolation(response,stimulus)
# Absolute response
plt.figure(1)
Vax = plt.subplot2grid((4,4), (row,col))
Vax.plot(xdata,new_response,'k',label = ID)
# Alpha coefficient
rc_pos, alpha = alphavr(new_response,xdata)
alpha_table[row,col] = alpha
dc_table[row,col] = rc_pos
if(row==0 and col==0):
NoFB_response_abs = new_response
# No-FB response
Vax.plot(xdata,NoFB_response_abs,'r',label = "No FB")
# Save data to file
np.savetxt('tmp/'+'area_response_abs_'+type+\
'_'+str(cc)+'_'+ID+'.out', new_response, delimiter=',')
# Normalized response
plt.figure(2)
Gax = plt.subplot2grid((4,4), (row,col))
new_response = new_response - np.min(new_response)
Gax.plot(xdata,new_response/np.max(new_response),'k',label = ID)
if(row==0 and col==0):
NoFB_response_norm = new_response/np.max(new_response)
# No-FB response
Gax.plot(xdata,NoFB_response_norm,'r',label = "No FB")
# Save data to file
np.savetxt('tmp/'+'area_response_norm_'+type+\
'_'+str(cc)+'_'+ID+'.out', new_response/np.max(new_response), delimiter=',')
np.savetxt('tmp/'+'area_response_xdata.out',xdata, delimiter=',')
# labels
if(row==0 and col==0):
Vax.set_xlabel('PY-IN: 0.0 nS')
Vax.xaxis.set_label_position('top')
if(row==0 and col==1):
Vax.set_xlabel('PY-IN: 0.5 nS')
Vax.xaxis.set_label_position('top')
if(row==0 and col==2):
Vax.set_xlabel('PY-IN: 1.0 nS')
Vax.xaxis.set_label_position('top')
if(row==0 and col==3):
Vax.set_xlabel('PY-IN: 6.0 nS')
Vax.xaxis.set_label_position('top')
if(row==0 and col==0):
h = Vax.set_ylabel('PY-RC: 0.0 nS')
# h.set_rotation(0)
if(row==1 and col==0):
h = Vax.set_ylabel('PY-RC: 1.0 nS')
# h.set_rotation(0)
if(row==2 and col==0):
h = Vax.set_ylabel('PY-RC: 2.0 nS')
# h.set_rotation(0)
if(row==3 and col==0):
h = Vax.set_ylabel('PY-RC: 6.0 nS')
# h.set_rotation(0)
if(row==3):
Vax.set_xlabel('Spot diameter (deg)')
if (row==3 and col==3):
Vax.legend(loc=1)
if(col<3):
col+=1
else:
col = 0
row+=1
print("alpha = ", alpha_table)
print("dc = ", dc_table)
### Contour plots
y = np.arange(3,-1,-1)
x = np.arange(0,4,1)
X, Y = np.meshgrid(x, y)
### Contour plots
# First plot
fig3 = plt.figure()
Vax = plt.subplot2grid((1,1), (0,0))
# interpolation
#sigma = 0.5
#data1 = gaussian_filter(alpha_table, sigma)
data1 = alpha_table
#levels1 = [30.0,40.0,50.0,60.0,70.0]
levels1 = [5.0,10.0,15.0,20.0,25.0,30.0]
CS1 = Vax.contourf(X, Y, data1, levels1, cmap=plt.cm.Blues)
plt.setp(Vax, yticks=[])
plt.setp(Vax, xticks=[])
#cbar1 = plt.colorbar(CS1,ticks=[])
#cbar1 = plt.colorbar(CS1)
# Second plot
fig4 = plt.figure()
Gax = plt.subplot2grid((1,1), (0,0))
# interpolation
#sigma = 0.5
#data2 = gaussian_filter(dc_table, sigma)
data2 = dc_table
#levels2 = [1.8,1.9,2.0]
levels2 = [2.0,2.1,2.2,2.4,2.5]
CS2 = Gax.contourf(X, Y, data2, levels2, cmap=plt.cm.Blues)
plt.setp(Gax, yticks=[])
plt.setp(Gax, xticks=[])
#cbar2 = plt.colorbar(CS2,ticks=[])
#cbar2 = plt.colorbar(CS2)
###
plt.show()