#Kim et al. PLoS Comp Biol 2010 ####Models of Second Messenger Pathways in CA1 pyramidal cell. # ## ALL Units in nM for concentration and second for time. #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # CaMCa4 binding Partner's affinities: (1) PP2B(28 pM); (2) PDE1B(10 nM); # (3) CaMKII(80 nM); (4) AC1(150 nM) #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # #### This version based on rebased with Cab=70 nM, CaMtot=15 uM, CK_tot=20 uM, Ca_max=10 uM param t_rise=0.01 #300 sec inter-train interval: #param Ca_max=10000, t_dur=0.009,tau=0.01,train_len=1, t1=100, t2=400, t3=700, t4=1000, Cab=70 #3 sec inter-tr param Ca_max=10000, t_dur=0.009,tau=0.01,train_len=1, t1=100, t2=103, t3=106, t4=109, Cab=70 tm=mod(t, tau) t_pulse=t_dur-tm param t_tau=0.01 Ca_pre =Cab+(Ca_max-Cab)*heav(t-t1)*heav(t1+train_len-t)*heav(t_pulse)+(Ca_max-Cab)*heav(t-t2)*heav(t2+train_len-t)*heav(t_pulse)+(Ca_max-Cab)*heav(t-t3)*heav(t3+train_len-t)*heav(t_pulse)+(Ca_max-Cab)*heav(t-t4)*heav(t4+train_len-t)*heav(t_pulse) dCa/dt=(Ca_pre-Ca)/t_tau #aux Ca=Ca #cam_rate - approximates additional calmodulin diffusing into spine or dissociating from neurogranin as calmodulin decreases #make cam_rate = 0 to see how CaMKII activation changes consequent to depletion of calmodulin (figure S4A). Par cam_rate=0.1 cam_a=cam_rate*(7924-cam) aux cam_a=cam_a ##L## param Lb=10, L_max=1000, tauL=2 L=Lb+(L_max-Lb)*heav(t-t1)*heav(t1+train_len-t)+(L_max-Lb)*heav(t-t2)*heav(t2+train_len-t)+(L_max-Lb)*heav(t-t3)*heav(t3+train_len-t)+(L_max-Lb)*heav(t-t4)*heav(t4+train_len-t) #aux L=L #param Cab=70, Lb=10 #Ca=Cab #L=Lb ####G_protein part#################################### # #L + R <--> LR (k1, k_1), Kd=9000 #LR + G <--> LRG (k2, k_2), Kd=1.666667 #G + R <--> GR (k1a, k_1a), Kd=5 #GR + L <--> LRG (k2a, k_2a), Kd=3000 #LRG -->LR + GaGTP + Gbg (k3) # or maybe: LRG -->L + R + GaGTP + Gbg (k3) #GaGTP -->GaGDP (k4) #GaGDP + Gbg --> G (k5) # ###################################################### par k2a=0.00333333 k_2a=10 par k1a=0.00006 k_1a=0.0003 par k_1=10 k1=0.0011111 par k2=0.0006 k_2=0.001 parameters k3=20 parameters k4=10 parameters k5=100 dLR/dt=k1*R*L-k_1*LR-k2*LR*G+k_2*LRG+k3*LRG init LR=0.9886277 dLRG/dt=k2*LR*G-k_2*LRG-k3*LRG+k2a*GR*L-k_2a*LRG init LRG=0.5300418 dGaGTP/dt=k3*LRG-k4*GaGTP+E*k_6-GaGTP*AC1*k6 init GaGTP=1.060084 dGaGDP/dt=k4*GaGTP-k5*GaGDP*Gbg init GaGDP=143.092094 dGR/dt=k1a*G*R-k_1a*GR-k2a*GR*L+k_2a*LRG init GR=434.160416 dGbg/dt=k3*LRG-k5*GaGDP*Gbg init Gbg=0.000739 G=Gtot-(LRG+GaGTP+GaGDP+E+ECam+ECamATP+GR) #Aux G=G par Gtot=3000 Galfa=GaGTP+GaGDP #Aux Galfa=Galfa R=Rtot-LR-LRG-GR par Rtot=500 #aux R=R ##### AC part: AC1 & AC8 activation thr Ca4CaM ########################### # #GaGTP + AC1 <--> E (K6, K_6) : Kd=260 nM from Dessaur paper(AC5?) #E+ CaMCa4 <---> ECam(k7, k_7): Kd=100 nM #ECam + ATP <---> ECamATP(k8,k_8)--->ECam + cAMP(v8): Km=162 uM # # Synergic effect: v8 increase X10 or X100(see JNeuroscience2003_Wang et al., 23(30)9710_9718) # #AC1 + CaMCa4 <---> AC1Cam (k9,k_9): Kd=150 nM #AC1Cam + ATP <--->AC1CamATP(k10,k_10)--->AC1Cam + cAMP(v10):Km=162 uM # #AC8 + CaMCa4 <--->AC8Cam(k11,k_11):Kd=800 nM #AC8Cam + ATP <--->AC8CamATP(k12, k_12)--->AC8Cam + cAMP(v12):Km=162 uM # #k10=0.01------> cAMP_basal=56 nM # ########################################################################## par k6=0.0385,k_6=10 par k7=0.009,k_7=0.9 par k8=0.01, k_8=2273, v8=28.42 par k9=0.006,k_9=0.9 par k10=0.01, k_10=2273, v10=2.842 par k11=0.00125,k_11=1 par k12=0.01,k_12=2273,v12=2.842 par AC1tot=2500, AC8tot=2500 dE/dt=k6*GaGTP*AC1-K_6*E+k_7*ECam-k7*E*CaMCa4 dECam/dt=k7*E*CaMCa4-K_7*ECam+(k_8+v8)*ECamATP-k8*ECam*ATP dECamATP/dt=k8*ECam*ATP-(k_8+v8)*ECamATP dAC1Cam/dt=k9*AC1*CaMCa4-k_9*AC1Cam-k10*AC1Cam*ATP+(k_10+v10)*AC1CamATP dAC1CamATP/dt=k10*AC1Cam*ATP-(k_10+v10)*AC1CamATP dAC8Cam/dt=k11*AC8*CaMCa4-k_11*AC8Cam+(k_12+v12)*AC8CamATP-k12*AC8Cam*ATP dAC8CamATP/dt=k12*AC8Cam*ATP-(k_12+v12)*AC8CamATP dCAMP/dt=ECamATP*v8+AC1CamATP*v10+AC8CamATP*v12\ -KfPde1*PDE1cam*cAMP+KbPde1*PDE1cAMP-KfPde4*PDE4*cAMP+KbPde4*PDE4cAMP\ -2*kfhigh*camp*pka+2*kbhigh*PKAcamp1-2*kflow*camp*pkacamp1+2*kblow*pkacamp2 par ATPtot=2e6 par katp=10 ATP=ATPtot-cAMP-ECamATP-AC1CamATP-AC8CamATP-AMP-PDE1cAMP-PDE4cAMP\ -2*PKAcamp1-4*PKAcamp2-4*PKAr ACCam=ECam + AC1Cam+AC8Cam+AC1CamATP+AC8CamATP aux ACCam=ACCam init CAMP=135.9675 init E=8.714253 init ECam=0.221507627 init ECamATP=1.923882 init AC1Cam=36.38592 init AC1CamATP=319.7911 init AC8Cam=7.760417 init AC8CamATP=68.15126 AC1=AC1tot-(E+ECam+ECamATP+AC1CamATP+AC1Cam) AC8=AC8tot-(AC8Cam+AC8CamATP) #Aux AC1=AC1 #Aux AC8=AC8 #Aux ATP=ATP ### PDE part ########################################################################### # # PDE1 + CaMca4 <=> PDECam (KbpdeCam, KfpdeCam :Kd=10 nM) # PDE1cam + cAMP<=>PDE1-cAMP -> PDE1 + AMP : Km (K_PDE1) Vmax=V_PDE1 (KfPde1, KbPde1) # PDE4 + cAMP<=>PDE4-cAMP -> PDE4 + AMP : Km (K_PDE4) Vmax=V_PDE4 (KfPde4, KbPde4) # ######################################################################################## par K_Pde4=4000 V_Pde4=18 KfPde4=0.02 KbPde4=72 par K_Pde1=12000 V_Pde1=11 KfPde1=0.0046 KbPde1=44 par Pde1Tot=4000, Pde4Tot=2000 par speedpde=0.1 KbpdeCam=10*speedpde KfpdeCam=1*speedpde init PDE1cAMP=9.2542541 init PDE4cAMP=58.653095 init AMP=115.76139 PDE1=Pde1Tot-PDE1cAMP-PDE1Cam PDE4=Pde4Tot-PDE4cAMP aux PDE1=PDE1 aux PDE4=PDE4 dPDE1cAMP/dt = KfPde1*PDE1Cam*cAMP - KbPde1*PDE1cAMP - V_Pde1*PDE1cAMP dPDE4cAMP/dt = KfPde4*PDE4*cAMP - KbPde4*PDE4cAMP - V_Pde4*PDE4cAMP dAMP/dt = V_Pde1*PDE1cAMP + V_Pde4*PDE4cAMP - katp*amp dPDE1Cam/dt=KfpdeCam*PDE1*CaMCa4-KbpdeCam*PDE1Cam-KfPde1*PDE1Cam*cAMP+(KbPde1+V_Pde1)*PDE1cAMP init PDE1CaM=813.6621 ### CaM,CaMCa4 & PP2B Binding ############################################################## # #CaM+2Ca <-> CaMCa2_C (KfC, KbC; Kd=1.5 uM ) #CaMCa2_C + 2Ca <-> Ca4CaM (KfN, KbN; Kd=10 uM) #CaM + PP2(2B) <-> PP2CaM (K33a, K_33a) #CaMCa2 + PP2(2B) <-> PP2CaMCa2 (K33c, K_33c) #CamCa4 + PP2(2B) <-> PP2B (K32, K_32) :: New rate constants from waxham 2006 paper!!! #PP2CaM + 2Ca <-> PP2CaMCa2 (KfC, KbCP - old 34a; KbCP is ~10x slower than KbC) #PP2CaMCa2 + 2 Ca <-> PP2B(= PP2CaMCa4) (KfN, KbNP - old 34c; KbNP is ~10x slower than KbN) # ############################################################################################ Par KfN=0.1 KbN=1000 KbNP=10 Par KfC=6e-3 KbC=9.1 KbCP=0.91 par k33c=1 k_33c=0.3 par k33a=1 k_33a=3 par k32=0.046 k_32=0.0012 init CaMCa2=365.7787 init CaMCa4=2.561034 init PP2B=720.91025 init PP2cam=2236.603 init PP2camc2=1029.996 #Par CaMtot=15000 Par PP2Btot=4000 #CaMtot=15000+cam_a dCaMtot/dt=cam_a init CaMtot=15000 dCaMCa2/dt=kfC*Ca*CaM-kbC*CaMCa2+kbN*CaMCa4-kfN*Ca*CaMCa2\ +k_33c*PP2camc2-k33c*CaMCa2*2B #3rd line has been added into CaMCa4 & CaM eqns.. dCaMCa4/dt=kfN*Ca*CaMCa2-kbN*CaMCa4-k32*CaMCa4*2B+k_32*PP2B\ -k51*CaMCa4*CK+k_51*CKCam-KfpdeCam*PDE1*CaMCa4+KbpdeCam*PDE1Cam\ -k7*E*CaMCa4+k_7*ECam-k9*AC1*CaMCa4+k_9*AC1Cam-k11*AC8*CaMCa4+k_11*AC8Cam CaM=CaMtot-(CaMca2+CaMca4+AC1Cam+AC8Cam+PP2cam+PP2camc2+PP2B+Ip35p1p2+Ip35pp2b\ +CKCam+CKpCam+PDE1cam+PDE1camp\ +ECam+ECamATP+AC1Cam+AC1CamATP+AC8Cam+AC8CamATP) aux CaM=CaM camc4bnd=PP2B+Ip35PP2B+Ip35p1p2+CKCam+CKpCam+pde1cam+pde1camp\ +ECam+ECamATP+AC1Cam+AC1CamATP+AC8Cam+AC8CamATP aux camc4bnd=camc4bnd totCaM=caM+caMca2+caMca4+PP2cam+PP2camc2+camc4bnd dPP2B/dt=k32*CaMCa4*2B-k_32*PP2B+kfN*PP2camc2*Ca-KbNP*PP2B\ -k22*Ip35*PP2B+(k_22+v22)*Ip35pp2b-k23*Ip35pp1*PP2B+(k_23+v23)*Ip35p1p2 dPP2cam/dt=k33a*CaM*2B-k_33a*PP2cam-kfC*PP2cam*Ca+kbCP*PP2camc2 dPP2camc2/dt=k33c*CaMCa2*2B-k_33c*PP2camc2-kfN*PP2camc2*Ca+kbNP*PP2B\ +kfC*PP2Cam*Ca-kbCP*PP2camc2 2B=PP2Btot-(PP2B+PP2camc2+PP2cam+Ip35pp2B+Ip35p1p2) #2B=2Btot-PP2B-PP2camc2-PP2cam-Ip35pp2B-Ip35p1p2 #PAR 2Btot=4000 aux 2B=2B PP2Bact=PP2B+Ip35pp2B+Ip35p1p2 ####CaMKII Part:modified from Dupont's Model:####################################### # # Dec.2006: convert to qantitative model from Dupont's code # April,2007: eliminate CKpC form --> combined CKpCam & CKpC # June_2007 : simplified Va form to match De Koninck's Exp. data # ## Chemical Reactions: CaMCa4 + CK <-> CKCam (k51, k_51): bounded form(kd=80 nM) # CKCam --> CKpCam (Va : Autophoshorylation) # CKpCam <--> CKp + CaMCa4 ( k52, k_52):trapped form(kd=10e-12) # K_52: 1/3 of K_51(0.26667)suggested by Meyer et al.(1992) # Ckp + PP1 <-->CKpPP1 --> PP1 + CK :Dephoshop(k54,k_54,k54cat) # ; Km=5.1 uM from foulkes et. al., et al., Eur. JBiochem.1983 132(309-313)) # ; Vmax=5.7 umol/min --> kcat=3.5 sec-1 & kb=14 sec-1 # ; Simonelli 1984(Grad Thesis,CUNY) showed that other substrate are about 1/10 # ; rate of phosphorylase a so, reduce kf,kb,kcat by 10 # ; Schulman's Exp. data taken ######################################################################################## param CK_ini=20000 CK=CK_ini-CKCam-CkpCam-CKp-CKpPP1 aux CK=CK dCKCam/dt = k51*CaMCa4*CK - K_51*CKCam-Va*CK_ini init CKCam=594.4366 dCKpCam/dt = Va*CK_ini + k_52*CKp*CaMCa4-k52*CKpCam init CKpCam=812.7395 dCKp/dt =k52*CKpCam - k_52*CKp*CaMCa4 + k_54*CKpPP1-k54*CKp*PP1 init CKp=10.63496 dCKpPP1/dt =k54*CKp*PP1-(k_54+k54cat)*CKpPP1 init CKpPP1=3.341977 Va=Ka1*((qb*CKCam)^3/(CK_ini^3)+((qb*CKCam)^2*qp*CKpCam)/(CK_ini^3)) param k51=0.01,k_51=0.8,k52=0.0008,k_52=0.0133,Kd=1000,Ka1=0.46 param k54=0.000039,k_54=0.34,k54cat=0.086 param qb=0.75, qp=1, qt=0.8, qa=0.8, qpt=1.0 par pp1tot=3500 PP1= PP1tot-CKpPP1-Ip35PP1-Ip35P1P2 aux pp1=pp1 QActi=qpt*CKpCam+qa*CKp Acti=QActi/CK_ini aux QActi=QActi #aux Acti=Acti ### PKA part:############################# # #PKA+2cAMP<->PKAcAMP1; Kdhigh, slow #PKAcAMP1+2cAMP<->PKAcAMP2; Kdlow #PKAcAMP2<->PKAr+2PKAc; Kd_diss, slow # ########################################## par speedpka=10.0 kbhigh=0.002*speedpka kfhigh=4.3478e-06*speedpka*2 kblow=0.02*speedpka kflow=5.7703e-6*speedpka*2 kasrc=0.00017*speedpka kdisrc=0.0016*speedpka par PKAtot=1200 dPKAcAMP1/dt=kfhigh*cAMP*PKA-kbhigh*PKAcAMP1-kflow*cAMP*PKAcAMP1+kblow*PKAcAMP2 dPKAcAMP2/dt=kflow*cAMP*PKAcAMP1-kblow*PKAcAMP2-kdisrc*PKAcAMP2+kasrc*PKAc*PKAr dPKAc/dt=2*kdisrc*PKAcamp2-2*kasrc*PKAc*PKAr-k20*I1*PKAc+k_20*I1PKAc+v20*I1PKAc Pka=PKAtot-PKAcAMP1-PKAcAMP2-0.5*(PKAc+I1PKAc) PKAr=0.5*(PKAc+I1PKAc) init PKAcAMP1=428.0043 init PKAcAMP2=33.5732 init PKAc=22.17636 PKAact=PKAc+I1PKAc totPKA=PKA+PKAcAMP1+PKAcAMP2+0.5*(PKAc+I1PKAc) ####Inhibitor 1 Phospho & Dephosphorylation ################ ## ## I1+PKAc <--> I1PKAc --> Ip35 + PKAc (20) ## Ip35 + PP1 <--> Ip35pp1 (21) ## Ip35 + PP2B <--> Ip35pp2b --> I1 + PP2B (22) ## Ip35pp1 + PP2B <--> Ip35p1p2 --> I1 + PP1 + PP2B (23) ## ############################################################ par I1tot=1500 I1=I1tot-I1PKAc-Ip35-Ip35pp1-Ip35pp2b-Ip35p1p2 aux I1=I1 par k20=0.0014 k_20=5.6 v20=1.4 dI1PKAc/dt=k20*I1*PKAc-k_20*I1PKAc-v20*I1PKAc init I1PKAc=6.32017 dIp35/dt=v20*I1PKAc+k_22*Ip35pp2b-k22*Ip35*PP2B-k21*Ip35*PP1+k_21*Ip35pp1 init Ip35=2.169742 #### Ip35 + PP1 <--> Ip35pp1 (21) ##### par k21=0.001 k_21=0.0011 dIp35pp1/dt=k21*Ip35*PP1-k_21*Ip35pp1-k23*Ip35pp1*pp2b+k_23*Ip35p1p2 init Ip35pp1=51.23495 #### Ip35 + PP2B <--> Ip35pp2b --> I1 + PP2B (22) ############# par k22=0.00467 k_22=11.2 v22=2.8 dIp35pp2b/dt=k22*Ip35*PP2B-k_22*Ip35pp2b-v22*Ip35pp2b init Ip35pp2b=0.5217763 #### Ip35pp1 + PP2B <--> Ip35p1p2 --> I1 + PP1 + PP2B (23) ##### par k23_a=1.0 k23=0.001*k23_a k_23=2*k23_a v23=0.5*k23_a dIp35p1p2/dt=k23*Ip35pp1*PP2B-k_23*Ip35p1p2-v23*Ip35p1p2 init Ip35p1p2=14.77453 ########################################################### dPKAauc/dt=PKAc init PKAauc=0 @ Total=1400 dt=0.1 method=stiff xlo=0 xhi=3000 ylo=0 yhi=1 maxstor=6000000 \ bounds=10000000000 BACK=black nOutput=10000 d