# Relevant parameters for the model
from brian2 import *
#####################################################
# Set Parameters
#####################################################
timeStep = 25.*us # timeStep
defaultclock.dt = timeStep # timeStep
spinedist = 50 # spine distance
celsius_temp = 32. # temperature (see Acker&Antic 2008)
tadj = 2.3**((celsius_temp - 23.)/10.) # temperature adjustment factor
#------------
# PASSIVE
#------------
R_axial = 90.*ohm*cm # axial resistance
spine_factor = 1.5 # factor to account for spines
g_leak = 0.04*msiemens/cm**2 # leak conductance
g_leak_dend = g_leak*spine_factor # leak conductance in presence of spines
Capacit = 1.*uF/cm**2 # membrane capacitance
Capacit_dend = Capacit*spine_factor # membrance capacitance in presence of spines
EL=-60*mV # resting membrane voltage
#------------
# AMPA and NMDA
#------------
taus = 2.*ms # AMPA time constant
Es = 0.*mV # AMPA reversal potential
ENMDA = 0.*mV # NMDA reversal potential
Egaba = -72.*mV # NMDA reversal potential
tau_NMDA = 50.*ms # NMDA time constant
tau_gaba = 10.*ms # NMDA time constant
syn_weight = 0.5 # initial synaptic weight
wa_max = 1. # maximal AMPA weight
wn_max = 1. # maximal NMDA weight
w_min = .0001 # maximal NMDA weight
ampa_cond = 1500.*1e-12*siemens # AMPA maximal conductance
nmda_cond = 3000.*1e-12*siemens # NMDA maximal conductance
gaba_cond = 1500.*1e-12*siemens # NMDA maximal conductance
#------------
# Plasticity and noise
#------------
Theta_low_Branco = EL - 12*mV # depolarization threshold for plasticity
Theta_low_Acker = EL - 9*mV # depolarization threshold for plasticity
Theta_high = -15.*mV # threshold for potentiation events
x_reset = 5. # spike trace reset value
taux = 20.*ms # spike trace time constant
A_LTD = 4.e-4 # depression amplitude
A_LTP = 14.e-4 # potentiation amplitude
tau_ca = 5.*ms # filter1 timeconstant
tau_ltd = 15.*ms #filter2 timeconstant
tau_ltp = 45.*ms #filter2 timeconstant
tau_noise = 20.*ms # noise filter timeconstant
noise_std = 0*pA # noise standard deviation
noise_mean = 0*pA # noise mean
probConnect = 0.0000001*timeStep/ms#0.02 #probConnect
probDisconnect = 0.000025*timeStep/ms#0.02 # probDisconnect
strpower = 1 #str power
sbias = 150
#------------
# ACTIVE Conductances (based on Acker&Antic 2008)
#------------
#Sodium channels
somaNa = 200.*psiemens/um**2
axonNa = 5000.*psiemens/um**2
basalNa = 150.*psiemens/um**2
apicalNa = 250.*psiemens/um**2
#Calcium channels
somaCa = 5.*psiemens/um**2
dendCa = .5*psiemens/um**2
ratio_ca = .8
#Delayed-rectifier Potassium channels
dendgKv = 40.*psiemens/um**2
somagKv = 400.*psiemens/um**2
axongKv = 500.*psiemens/um**2
#IL channel
axongKl = 0*psiemens/um**2
#A-type Potassium channels
somaKap = 300.*psiemens/um**2
basalKa = 150.*psiemens/um**2
apicalKa = 300.*psiemens/um**2
#Leak conductance in axon
axongL = g_leak
#------------
# Ion Channel Parameters (see Acker&Antic 2008)
#------------
#Na
vshiftna = -10.
ENav = 60.*mV
tha = -35.
qa = 9.
Ra = 0.182
Rb = 0.124
thi1_all = -65.
thi2_all = -65.
thi1_axn = -58.
thi2_axn = -58.
qi = 6.
thinf = -65.
qinf = 6.2
Rg = 0.02
Rd = 0.024
#Cav / T-type
ECav = 140.*mV
vshiftca = 10.
v12m=45.
v12h=65.
vwm =7.4
vwh=5.0
am=3.
ah=30.
vm1=50.
vm2=125.
vh1=56.
vh2=415.
wm1=20.
wm2=15.
wh1=4.
wh2=50.
#Kv
EKv=-80.*mV
tha_kv = 25.
qa_kv = 9.
Ra_kv = 0.02
Rb_kv = 0.002
#Kap
vhalfn=11.
vhalfl=-56.
#a0l=0.05
a0n=0.05
zetan=-1.5
zetal=3.
gmn=0.55
gml=1.
lmin=2.
nmin=0.1
pw=-1.
tq=-40.
qq=5.
qt=5.**((celsius_temp-24.)/10.)
qtl=1.
#Kad
vhalfn2=-1.
vhalfl2=-56.
#a0l2=0.05
a0n2=.1
zetan2=-1.8
zetal2=3.
gmn2=0.39
gml2=1.
lmin2=2.
nmin2=0.1
pw2=-1.
tq2=-40.
qq2=5.
qtl2=1.
#KL
vhalfn3=11.
vhalfl3=-56.
#a0l3=0.05
a0n3=0.05
zetan3=-1.5
zetal3=3.
gmn3=0.55
gml3=1.
lmin3=2.
nmin3=0.1
pw3=-1.
tq3=-40.
qq3=5.
qtl3=1.