import tensorflow as tf
def tf_createVariables(NrON_1,NrON_0,S_potential,Nrn_u_delay,Nrn_traces,Nrn_u_lowpass,D_potential,
Nrn_conductance,Synapses,input_x):
# Ipt_spikes = tf.placeholder(tf.float32, shape=(NrON_0-NrON_1), name='Ipt_spikes')
spk_gen = tf.placeholder(tf.float32, shape=(NrON_1), name='spk_gen')
volt_S = tf.Variable(tf.to_float(S_potential), name='volt_S')
u_delay = tf.Variable(tf.to_float(Nrn_u_delay), name='u_delay')
Nrn_trace = tf.Variable(tf.to_float(Nrn_traces), name='Nrn_trace')
Nrn_u_lp = tf.Variable(tf.to_float(Nrn_u_lowpass), name='Nrn_u_lp')
volt_D = tf.Variable(tf.to_float(D_potential), name='volt_D')
Conductances = tf.Variable(tf.to_float(Nrn_conductance), name='Conductances')
Synapses_out = tf.Variable(tf.to_float(Synapses), name='WeightMatrix')
Inh_feedb = tf.Variable(tf.to_float(0.0),name='Inh_feedb')
inputX = tf.Variable(tf.to_float(input_x), name='inputX')
sim_index = tf.Variable(0.0, name="sim_index")
return spk_gen,volt_S,u_delay,Nrn_trace,Nrn_u_lp,volt_D,Conductances,Synapses_out,Inh_feedb,inputX,sim_index