N=60001; % total simulation time, ms
sw=1200; % duration of one sweep
dsw=1200; % change of the sweep
av=round(N/sw); % number of sweeps
dt=0.1; %ms
% model parameters
c=217; i=0; gl=12.8;
el=-55.144; vt=-56.252;
delta=0.77; vreset=-68;
a=35.4; tauw=7.5; b=323;
% parameters for external biexponential intput
Am=200; % pA, optimal for inhibition
taus1=1.5; % ms, rise constant
taus2=10; % ms, decay constant
ts=600; % STIMULUS TIME!
% parameters for external gaussian input
% AA=50; % pA
% C=500; % sigma in Gaussian
% number of spikes
tT=20; % delta bin, ms
bin=20; % initial size of a bin, ms
A=zeros(1,round(sw/tT));
vspike=0;
Ihold=-90;
sigma=20;
corr=2;
temp=0;
j=1;
k=0;
% initial conditions
v(1)=-57;
w(1)=0;
input(1)=Ihold;
in(1)=0;
m(1)=0;
t(1)=0;
% zero initial conditions for external stimuli
for i=2:1:round(N/dt)
t(i)=(i-1)*dt;
% additional stimulus
% delta function approximation
if t(i)==ts
stim(i)=1/dt;
else
stim(i)=0;
end;
% generate external stimuli
m(i)=dt/taus1/taus2*(Am*(1-in(i-1))*stim(i)/K(1/taus1,1/taus2)-in(i-1)-(taus1+taus2)*m(i-1)) + m(i-1);
in(i)=m(i)*dt + in(i-1);
% generate total stimuli
temp=temp-dt/corr*temp + sqrt(2*dt/corr)*random('normal',0,1,1,1);
input(i)=Ihold + temp*sigma + in(i);
% in(i)= AA*exp(-(t(i)-ts)^2/2/C);
%input(i)=Ihold + temp*sigma + in(i);
% no dendrite
v(i)=dt/c*(-gl*(v(i-1)-el)+gl*delta*exp((v(i-1)-vt)/delta)-w(i-1)+input(i)) + v(i-1);
w(i)=dt/tauw*(a*(v(i-1)-el)-w(i-1)) + w(i-1);
% binning
if t(i)>=bin;
bin=bin + tT;
j=j+1;
end;
% sweep
if t(i)>=sw;
ts=ts+dsw;
sw=sw + dsw;
j=1; % reset the bin number
v(i)=-57;
w(i)=0; % reset init. cond. after each sweep
end;
if v(i)>vspike
v(i-1)=0; % add sticks to the previous step
v(i)=vreset;
w(i)=w(i) + b;
% +1 spike to the bin
A(j)=A(j)+1;% % average number of spikes in each bin
end
end
A=A/av/tT;
%save psth100000.mat