function A = M_diff_border(N)
% CREATES the diffusion matrix of a size N
% lattice with periodic / empty border conditions
% N - size parameter, number of elements in the matrix - sqrt(elements)
function ind = graph_element(x,y,N)
%UNTITLED2 Summary of this function goes here
% returns the number of an element on the graph, numbrering -> and down
ind=x+(y-1)*N;
end
% Diffusion matrix
A=zeros(N^2,N^2); % adjacenty matrix, SYMMETRIC!
for x=1:1:N % loop over all all graph edges
for y=1:1:N
% border conditions
% perdiodic border conditions
A(graph_element(x,1,N),graph_element(x,N,N))=1;
A(graph_element(1,y,N),graph_element(N,y,N))=1;
A(graph_element(x,N,N),graph_element(x,1,N))=1;
A(graph_element(N,y,N),graph_element(1,y,N))=1;
%}
% open border conditions
%{
A(graph_element(x,1,N),graph_element(x,N,N))=0;
A(graph_element(1,y,N),graph_element(N,y,N))=0;
A(graph_element(x,N,N),graph_element(x,1,N))=0;
A(graph_element(N,y,N),graph_element(1,y,N))=0;
%}
% formula for the rest of the elements
%{
if x+1<=N
A(graph_element(x,y,N),graph_element(x+1,y,N))=1;
A(graph_element(x+1,y,N),graph_element(x,y,N))=1;
end
if y+1<=N
A(graph_element(x,y,N),graph_element(x,y+1,N))=1;
A(graph_element(x,y+1,N),graph_element(x,y,N))=1;
end
if x>1
A(graph_element(x,y,N),graph_element(x-1,y,N))=1;
A(graph_element(x-1,y,N),graph_element(x,y,N))=1;
end
if y>1
A(graph_element(x,y,N),graph_element(x,y-1,N))=1;
A(graph_element(x,y-1,N),graph_element(x,y,N))=1;
end
%}
end
end
end