/*--------------------------------------------------------------------------
Author: Thomas Nowotny
Institute: Institute for Nonlinear Dynamics
University of California San Diego
La Jolla, CA 92093-0402
email to: tnowotny@ucsd.edu
initial version: 2005-08-17
--------------------------------------------------------------------------*/
#ifndef CN_NEUROSYNADAPT_CC
#define CN_NEUROSYNADAPT_CC
#include "CN_neuron.cc"
NeuroSynAdapt::NeuroSynAdapt(int inlabel, double *the_p= NEUROSYN_p):
neuron(inlabel, NEUROSYNADAPT_IVARNO, NEUROSYNADAPT, the_p, NEUROSYN_PNO)
{
tlast= -10000;
}
NeuroSynAdapt::NeuroSynAdapt(int inlabel, vector<int> inpos, double *the_p= NEUROSYN_p):
neuron(inlabel, NEUROSYNADAPT_IVARNO, NEUROSYNADAPT, inpos, the_p, NEUROSYNADAPT_PNO)
{
tlast= -10000;
}
inline double NeuroSynAdapt::E(double *x)
{
assert(enabled);
return x[idx];
}
double NeuroSynAdapt::S(double *x)
{
assert(enabled);
return x[idx+5];
}
double NeuroSynAdapt::Ca(double *x)
{
assert(enabled);
return x[idx+6];
}
double NeuroSynAdapt::Theta(double *x)
{
assert(enabled);
return x[idx+7];
}
void NeuroSynAdapt::derivative(double *x, double *dx)
{
Isyn= 0.0;
forall(den, den_it) {
Isyn+= (*den_it)->Isyn(x);
}
// differential eqn for E, the membrane potential
dx[idx]= -(pw3(x[idx+1])*x[idx+2]*p[0]*(x[idx]-p[1]) +
pw4(x[idx+3])*p[2]*(x[idx]-p[3])+
p[4]*(x[idx]-p[5])+p[6]*(x[idx]-p[7])+
p[10]*x[idx+4]*(x[idx]-p[3])-Isyn-p[11] + x[idx+7])/p[9];
// diferential eqn for m, the probability for one Na channel activation
// particle
_a= 0.32*(13.0-x[idx]-p[8]) / (exp((13.0-x[idx]-p[8])/4.0)-1.0);
_b= 0.28*(x[idx]+p[8]-40.0)/(exp((x[idx]+p[8]-40.0)/5.0)-1.0);
dx[idx+1]= _a*(1.0-x[idx+1])-_b*x[idx+1];
// differential eqn for h, the probability for the Na channel blocking
// particle to be absent
_a= 0.128*exp((17.0-x[idx]-p[8])/18.0);
_b= 4.0 / (exp((40-x[idx]-p[8])/5.0)+1.0);
dx[idx+2]= _a*(1.0-x[idx+2])-_b*x[idx+2];
// differential eqn for n, the probability for one K channel activation
// particle
_a= .032*(15.0-x[idx]-p[8]) / (exp((15.0-x[idx]-p[8])/5.0)-1.0);
_b= 0.5*exp((10.0-x[idx]-p[8])/40.0);
dx[idx+3]= _a*(1.0-x[idx+3])-_b*x[idx+3];
// M current activation
dx[idx+4]= tauz*(1.0/(1.0+exp(-(x[idx]+20.0)/5.0)) - x[idx+4]);
static double dt;
dt= x[0] - tlast;
if ((dt >= 0) && (dt <= p[16])) {
dx[idx+5]= p[14] - p[15]*x[idx+5];
} else {
if ((x[idx] > p[13]) && (dt > p[16])) {
// new spike ... start releasing
tlast= x[0];
dx[idx+5]= p[14] - p[15]*x[idx+5];
}
else {
// no release
dx[idx+5]= -p[15]*x[idx+5];
}
}
dx[idx+6] = (-x[idx+6]+x[idx+5])*0.01;
/*
dx[idx+7] = (x[idx+6]-p[18])*0.0005;
if(CaAdapt)
dx[idx+7] = (x[idx+6]-p[18])*0.0005;
else
dx[idx+7] = 0;
*/
if(x[idx+6] < 0.75*p[18] && CaAdapt)
{
dx[idx+7] = 0.0001*(-x[idx+7] -10);
}
else
dx[idx+7] = 0.000;
/*NCPaper syste
if(x[idx+6] < 0.75*p[18] && CaAdapt)
{
dx[idx+7] = 0.001*(-x[idx+7] -1);
}
else
dx[idx+7] = 0.000;
*/
/*Old
if(x[idx+6] < 0.75*p[18] && CaAdapt)
{
dx[idx+7] = 0.0001*(-x[idx+7] -1);
}
else
dx[idx+7] = 0.000;
*/
//remove for adapt
// dx[idx+7] = -x[idx+7]*0.1;
/*
if(CaAdapt)
dx[idx+7] = pow((x[idx+6]-p[18]),3)*0.00001;
else
dx[idx+7] = 0.000;
*/
/*
if(SlowerAdapt)
dx[idx+7] = (x[idx+6]-p[18])*0.00001;
*/
}
void NeuroSynAdapt::init(double *x, double *iniVars)
{
assert(enabled);
for (int i= 0; i < iVarNo; i++)
x[idx+i]= iniVars[i];
start_spiking= 0;
spiking= 0;
spike_time= -1.0;
tlast= -10000;
}
void NeuroSynAdapt::ResetSynapse(double *x)
{
x[idx+5] = 0;
}
#endif