/*-------------------------------------------------------------------------- Author: Thomas Nowotny Institute: Institute for Nonlinear Dynamics University of California San Diego La Jolla, CA 92093-0402 email to: tnowotny@ucsd.edu initial version: 2005-08-17 --------------------------------------------------------------------------*/ #ifndef CN_NEUROSYNADAPT_CC #define CN_NEUROSYNADAPT_CC #include "CN_neuron.cc" NeuroSynAdapt::NeuroSynAdapt(int inlabel, double *the_p= NEUROSYN_p): neuron(inlabel, NEUROSYNADAPT_IVARNO, NEUROSYNADAPT, the_p, NEUROSYN_PNO) { tlast= -10000; } NeuroSynAdapt::NeuroSynAdapt(int inlabel, vector<int> inpos, double *the_p= NEUROSYN_p): neuron(inlabel, NEUROSYNADAPT_IVARNO, NEUROSYNADAPT, inpos, the_p, NEUROSYNADAPT_PNO) { tlast= -10000; } inline double NeuroSynAdapt::E(double *x) { assert(enabled); return x[idx]; } double NeuroSynAdapt::S(double *x) { assert(enabled); return x[idx+5]; } double NeuroSynAdapt::Ca(double *x) { assert(enabled); return x[idx+6]; } double NeuroSynAdapt::Theta(double *x) { assert(enabled); return x[idx+7]; } void NeuroSynAdapt::derivative(double *x, double *dx) { Isyn= 0.0; forall(den, den_it) { Isyn+= (*den_it)->Isyn(x); } // differential eqn for E, the membrane potential dx[idx]= -(pw3(x[idx+1])*x[idx+2]*p[0]*(x[idx]-p[1]) + pw4(x[idx+3])*p[2]*(x[idx]-p[3])+ p[4]*(x[idx]-p[5])+p[6]*(x[idx]-p[7])+ p[10]*x[idx+4]*(x[idx]-p[3])-Isyn-p[11] + x[idx+7])/p[9]; // diferential eqn for m, the probability for one Na channel activation // particle _a= 0.32*(13.0-x[idx]-p[8]) / (exp((13.0-x[idx]-p[8])/4.0)-1.0); _b= 0.28*(x[idx]+p[8]-40.0)/(exp((x[idx]+p[8]-40.0)/5.0)-1.0); dx[idx+1]= _a*(1.0-x[idx+1])-_b*x[idx+1]; // differential eqn for h, the probability for the Na channel blocking // particle to be absent _a= 0.128*exp((17.0-x[idx]-p[8])/18.0); _b= 4.0 / (exp((40-x[idx]-p[8])/5.0)+1.0); dx[idx+2]= _a*(1.0-x[idx+2])-_b*x[idx+2]; // differential eqn for n, the probability for one K channel activation // particle _a= .032*(15.0-x[idx]-p[8]) / (exp((15.0-x[idx]-p[8])/5.0)-1.0); _b= 0.5*exp((10.0-x[idx]-p[8])/40.0); dx[idx+3]= _a*(1.0-x[idx+3])-_b*x[idx+3]; // M current activation dx[idx+4]= tauz*(1.0/(1.0+exp(-(x[idx]+20.0)/5.0)) - x[idx+4]); static double dt; dt= x[0] - tlast; if ((dt >= 0) && (dt <= p[16])) { dx[idx+5]= p[14] - p[15]*x[idx+5]; } else { if ((x[idx] > p[13]) && (dt > p[16])) { // new spike ... start releasing tlast= x[0]; dx[idx+5]= p[14] - p[15]*x[idx+5]; } else { // no release dx[idx+5]= -p[15]*x[idx+5]; } } dx[idx+6] = (-x[idx+6]+x[idx+5])*0.01; /* dx[idx+7] = (x[idx+6]-p[18])*0.0005; if(CaAdapt) dx[idx+7] = (x[idx+6]-p[18])*0.0005; else dx[idx+7] = 0; */ if(x[idx+6] < 0.75*p[18] && CaAdapt) { dx[idx+7] = 0.0001*(-x[idx+7] -10); } else dx[idx+7] = 0.000; /*NCPaper syste if(x[idx+6] < 0.75*p[18] && CaAdapt) { dx[idx+7] = 0.001*(-x[idx+7] -1); } else dx[idx+7] = 0.000; */ /*Old if(x[idx+6] < 0.75*p[18] && CaAdapt) { dx[idx+7] = 0.0001*(-x[idx+7] -1); } else dx[idx+7] = 0.000; */ //remove for adapt // dx[idx+7] = -x[idx+7]*0.1; /* if(CaAdapt) dx[idx+7] = pow((x[idx+6]-p[18]),3)*0.00001; else dx[idx+7] = 0.000; */ /* if(SlowerAdapt) dx[idx+7] = (x[idx+6]-p[18])*0.00001; */ } void NeuroSynAdapt::init(double *x, double *iniVars) { assert(enabled); for (int i= 0; i < iVarNo; i++) x[idx+i]= iniVars[i]; start_spiking= 0; spiking= 0; spike_time= -1.0; tlast= -10000; } void NeuroSynAdapt::ResetSynapse(double *x) { x[idx+5] = 0; } #endif