/*--------------------------------------------------------------------------
Author: Christopher L Buckley
Institute: Centre for Computational Neuroscience and Robotics
University of Sussex
FcondNetworkmer, Brighton BN1 9QJ, UK
email to: c.l.buckley@sussex.ac.uk
version: 2009-11-02
--------------------------------------------------------------------------*/
#ifndef neuroSynNetworkDetDET_H
#define neuroSynNetworkDetDET_H
class neuroSynNetworkDet {
public:
list<neuron *> neurs;
list<synapse *> syns;
list<neuron *>::iterator niter;
list<synapse *>::iterator siter;
NeuroSyn **theLNs;
NeuroSyn **thePNs;
NeuroSynRate **theORNs;
Emptysynapse **theSynapses;
DCInput **directLNInput;
DCInput **directORNInput;
NeuronModel *model;
rk65n *machine;
double *x, *xn;
double dt, dtx;
int N;
Array2D<double> mWeights;
Array1D<double> mSeqArray;
neuroSynNetworkDet();
~neuroSynNetworkDet();
void PrintWeights();
void generateNetwork();
void generateConnect();
void init();
void enable();
Array1D<double> run(double tme, double inputCurr, Array1D<int> inputStart);
void SetWeights(Array2D<double> weights, Array1D<double> SeqArray);
void ScaleWeights(double factor);
void ScaleBias(double factor);
void SetCC(Array1D<double> biasCC);
};
neuroSynNetworkDet::neuroSynNetworkDet() {
dt = 0.0001;
dtx = 0.0;
N = 0.0;
directLNInput = new DCInput*[NoTotal];
theLNs = new NeuroSyn*[NoTotal];
//Set up network memory and space
for (int i = 0; i < NoTotal; i++) {
theLNs[i] = new NeuroSyn(i, PARAMS_LN);
neurs.push_back(theLNs[i]);
directLNInput[i] = new DCInput(theLNs[i], 0);
}
//set up connections
theSynapses = new Emptysynapse*[NoTotal * NoTotal];
for (int i = 0; i < NoTotal; i++) {
for (int j = 0; j < NoTotal; j++) {
if (i != j) {
theSynapses[j * NoTotal + i] = new Emptysynapse(theLNs[i],
theLNs[j], 0.0);
}
}
}
//enable integaror
enable();
}
neuroSynNetworkDet::~neuroSynNetworkDet() {
list<neuron *>::iterator i;
list<synapse *>::iterator j;
for (i = neurs.begin(); i != neurs.end(); i++) {
delete *i;
}
for (j = syns.begin(); j != syns.end(); j++) {
}
delete[] theLNs;
delete[] directLNInput;
}
void neuroSynNetworkDet::PrintWeights() {
cout << "The weighst are: (rate)" << endl;
for (int i = 0; i < NoTotal; i++) {
for (int j = 0; j < NoTotal; j++) {
if (i != j) {
cout << theSynapses[j * NoTotal + i]->gsyn() << " ";
} else
cout << "0.0";
}
cout << endl;
}
}
void neuroSynNetworkDet::enable() {
model = new NeuronModel(&neurs, &syns, N, cerr);
x = new double[N];
xn = new double[N];
machine = new rk65n(N, rk65_MINDT, rk65_eps, rk65_absEps, rk65_relEps);
}
void neuroSynNetworkDet::SetWeights(Array2D<double> weights,
Array1D<double> SeqArray) {
mWeights = weights;
mSeqArray = SeqArray;
for (int i = 0; i < NoTotal; i++) {
for (int j = 0; j < NoTotal; j++) {
if (i != j) {
theSynapses[j * NoTotal + i]->set_gsyn(mWeights[i][j]);
}
}
}
}
void neuroSynNetworkDet::ScaleWeights(double factor) {
for (int j = 0; j < NoTotal; j++) {
for (int i = 0; i < NoTotal; i++) {
if (i != j)
theSynapses[j * NoTotal + i]->set_gsyn(mWeights[i][j] * factor);
}
}
}
void neuroSynNetworkDet::ScaleBias(double factor) {
double Parameters[NEUROSYN_PNO];
for (int i = 0; i < NEUROSYN_PNO; i++)
Parameters[i] = PARAMS_LN[i];
for (int i = 0; i < NoTotal; i++) {
theLNs[i]->p[11] = (theLNs[i]->p[11] * factor);
}
}
void neuroSynNetworkDet::SetCC(Array1D<double> biasCC) {
double Parameters[NEUROSYN_PNO];
for (int i = 0; i < NEUROSYN_PNO; i++)
Parameters[i] = PARAMS_LN[i];
for (int i = 0; i < NoTotal; i++) {
Parameters[11] = biasCC[i];
theLNs[i]->set_p(Parameters);
}
}
void neuroSynNetworkDet::init() {
dt = 0.0001;
dtx = 0.0;
N = 0.0;
double Initvalue[NEUROSYN_IVARNO];
int counter = 0;
int counter2 = 0;
for (niter = neurs.begin(); niter != neurs.end(); niter++) {
if (counter < NoTotal) {
for (int i = 0; i < NEUROSYN_IVARNO; i++)
Initvalue[i] = NEUROSYN_INIVARS[i] * RG.n() - 0.5 * RG.n();
if (counter < NoDirectLNInput)
Initvalue[5] = 0;
else
Initvalue[5] = RG.n();
(*niter)->init(x, Initvalue);
counter2++;
}
counter = counter + 1;
}
for (int i = 0; i < NoTotal; i++)
directLNInput[i]->set_I(0.0);
}
Array1D<double> neuroSynNetworkDet::run(double tme, double inputCurr, Array1D<
int> inputStart) {
Array1D<double> endPoints(2 * NoTotal, 0.0);
vector<double> spike_history;
stringstream name;
char thename[80];
ofstream NSDataN, NSDataS, NSDataIysn, NSDataM;
NSDataN.precision(10);
NSDataS.precision(10);
NSDataIysn.precision(10);
NSDataM.precision(10);
name.clear();
double *tmp;
x[0] = 0;
double factor;
if(doneFileCreate)
{
if (Manual)
name << globalName << "CondF.dat" << ends;
else
name << "CondF.dat" << ends;
name >> thename;
NSDataN.open(thename);
name.clear();
if (Manual)
name << globalName << "CondS.dat" << ends;
else
name << "CondS.dat" << ends;
name >> thename;
NSDataS.open(thename);
name.clear();
}
double accumulater = 0.0;
while (x[0] < tme) {
if (Gradual) {
if (int(x[0] * 10) % int(scaleBin * 10) == 0 && x[0] < scaleTime) {
factor = (scaleBin + x[0]) / scaleTime;
ScaleWeights(0.5 + 0.3 * factor);
// cout << (0.5 + 0.4 * factor) * percentCritical << endl;
}
if (int((x[0] - scaleStart2) * 10) % int(scaleBin * 10) == 0
&& x[0] > scaleStart2 && x[0] < (scaleStart2 + scaleTime2)) {
factor = (scaleBin + x[0] - scaleStart2) / scaleTime2;
ScaleWeights(0.8 + 0.2*factor);
// cout << (0.9 + 0.1*factor) * percentCritical << endl;
}
}
for (int i = 0; i < NoDirectLNInput; i++) {
if (x[0] < IMPULSESTART || x[0] > IMPULSESTART + IMPULSEDUR)
directLNInput[i]->set_I(RGaus.n() * NoiseMag);
else
directLNInput[i]->set_I(RGaus.n() * NoiseMag + inputCurr);
}
double tdt = 0.0;
for (int i = 0; i < NoTotal; i++) {
if (isnan(theLNs[i]->E(x))) {
exit(1);
}
if (theLNs[i]->S(x) < 0.001 && x[0] > (scaleStart2 + scaleTime2) && CreateFile)
exit(1);
// if(accumulater > 200.0)
// exit(1);
}
while (abs(tdt - 0.1) > 1e-9) {
dt = min(dt, 0.1 - tdt);
dtx = machine->integrate(x, xn, model, dt);
dtx = min(dtx, 2.0 * dt);
tmp = x;
x = xn;
xn = tmp;
tdt += dt;
dt = dtx;
}
for (int i = 0; i < NoTotal; i++)
theLNs[i]->spike_detect(x);
//out to screen progress
if (int(x[0] * 10) % 5000 == 0)
cout << x[0] << endl;
if(doneFileCreate){
if(x[0] > OutTime)
NSDataN << x[0];
for (int i = 0; i < NoTotal; i++) {
double spiker = 0;
if (theLNs[i]->start_spiking)
spiker = 1;
if(x[0] > OutTime)
NSDataN << " " << spiker;
}
if(x[0] > OutTime)
NSDataN << endl;
if(x[0] > OutTime)
{
NSDataM << x[0];
for (int i = 0; i < NoTotal; i++)
if(x[0] > OutTime)
NSDataM << " " << theLNs[i]->E(x);
NSDataM << endl;
}
if(x[0] > OutTime)
{
NSDataS << x[0];
for (int i = 0; i < NoTotal; i++) {
NSDataS << " " << theLNs[i]->S(x);
}
NSDataS << endl;
}
}
if (x[0] > (IMPULSESTART - 800) && x[0] < IMPULSESTART) {
for (int i = 0; i < NoTotal; i++) {
double spiker = 0;
if (theLNs[i]->start_spiking)
spiker = 1.0;
endPoints[i] = endPoints[i] + spiker;
}
}
if (x[0] > (THETIME - 800)) {
for (int i = NoTotal; i < 2 * NoTotal; i++) {
double spiker = 0;
if (theLNs[i - NoTotal]->start_spiking)
spiker = 1.0;
endPoints[i] = endPoints[i] + spiker;
}
}
}
if (doneFileCreate) {
NSDataN.close();
NSDataS.close();
NSDataM.close();
}
for (int i = 1; i < 2 * NoTotal; i++)
endPoints[i] = endPoints[i] / 800.0;
return endPoints;
}
#endif