//--------------------------------------------------------------------------
// Author: Thomas Nowotny
//
// Institute: Institute for Nonlinear Dynamics
// University of California San Diego
// La Jolla, CA 92093-0402
//
// email to: tnowotny@ucsd.edu
//
// initial version: 2005-08-17
//
//--------------------------------------------------------------------------
#ifndef CN_PNNEURON_H
#define CN_PNNEURON_H
#include "CN_neuron.h"
#include <cmath>
// parameters of the HH neuron, they are identical for all neurons used
// (and therefore made global to save memory)
#define PN_IVARNO 5
#define PN_PNO 17
double stdPN_p[PN_PNO]= {
7.15, // 0 - gNa: Na conductance in 1/(mOhms * cm^2)
50.0, // 1 - ENa: Na equi potential in mV
1.43, // 2 - gK: K conductance in 1/(mOhms * cm^2)
-95.0, // 3 - EK: K equi potential in mV
0.021, // 4 - gl: leak conductance in 1/(mOhms * cm^2)
-55.0, // 5 - El: leak equi potential in mV
0.00572, // 6 - gKl: potassium leakage conductivity
-95.0, // 7 - EKl: potassium leakage equi pot in mV
65.0, // 8 - V0: ~ total equi potential (?)
0.143, // 9 - Cmem: membr. capacity density in muF/cm^2
0.002, // 10 - kCa: Ca influx rate
0.0125, // 11 - Ca uptake rate
30.0, // 12 - KCa current sigmoid midpoint
3, // 13 - gKCa: conductance of KCa current
0.1, // 14 - gCa: conductance of V dependent Ca current
150, // 15 - reversal potential of Ca current
0.0 // 16 - IDC: baseline offset current
};
double *PN_p= stdPN_p;
const char *PN_p_text[PN_PNO]= {
"0 - gNa: Na conductance in 1/(mOhms * cm^2)",
"1 - ENa: Na equi potential in mV",
"2 - gK: K conductance in 1/(mOhms * cm^2)",
"3 - EK: K equi potential in mV",
"4 - gl: leak conductance in 1/(mOhms * cm^2)",
"5 - El: leak equi potential in mV",
"6 - gKl: potassium leakage conductivity",
"7 - EKl: potassium leakage equi pot in mV",
"8 - V0: ~ total equi potential (?)",
"9 - Cmem: membr. capacity density in muF/cm^2",
"10 - kCa: Ca influx rate",
"11 - Ca uptake rate",
"12 - KCa current sigmoid midpoint",
"13 - gKCa: conductance of KCa current",
"14 - gCa: conductance of V dependent Ca current",
"15 - reversal potential of Ca current",
"16 - IDC: baseline offset current"
};
double PN_INIVARS[PN_IVARNO]= {
-60.0, // 0 - membrane potential E
0.0529324, // 1 - prob. for Na channel activation m
0.3176767, // 2 - prob. for not Na channel blocking h
0.5961207, // 3 - prob. for K channel activation n
0.1 // 4 - Ca concentration
};
const char *PN_INIVARSTEXT[PN_IVARNO]= {
"0 - membrane potential E",
"1 - prob. for Na channel activation m",
"2 - prob. for not Na channel blocking h",
"3 - prob. for K channel activation n",
"4 - Ca concentration"
};
// HH neuron class itself
class PNneuron: public neuron
{
private:
double Isyn;
double ICa;
double IKCa;
double _a, _b;
public:
PNneuron(int, double *);
PNneuron(int, vector<int>, double *);
~PNneuron() { }
inline virtual double E(double *);
virtual void derivative(double *, double *);
};
#endif