//--------------------------------------------------------------------------
// Author: Thomas Nowotny
//
// Institute: Institute for Nonlinear Dynamics
//            University of California San Diego
//            La Jolla, CA 92093-0402
//
// email to:  tnowotny@ucsd.edu
//
// initial version: 2005-08-17
//
//--------------------------------------------------------------------------


#ifndef CN_PNNEURON_H
#define CN_PNNEURON_H

#include "CN_neuron.h"
#include <cmath>

// parameters of the HH neuron, they are identical for all neurons used
// (and therefore made global to save memory)

#define PN_IVARNO 5
#define PN_PNO 17

double stdPN_p[PN_PNO]= {
  7.15,          // 0 - gNa: Na conductance in 1/(mOhms * cm^2)
  50.0,          // 1 - ENa: Na equi potential in mV
  1.43,          // 2 - gK: K conductance in 1/(mOhms * cm^2)
  -95.0,         // 3 - EK: K equi potential in mV
  0.021,         // 4 - gl: leak conductance in 1/(mOhms * cm^2)
  -55.0,         // 5 - El: leak equi potential in mV
  0.00572,       // 6 - gKl: potassium leakage conductivity
  -95.0,         // 7 - EKl: potassium leakage equi pot in mV
  65.0,          // 8 - V0: ~ total equi potential (?)
  0.143,         // 9 - Cmem: membr. capacity density in muF/cm^2
  0.002,         // 10 - kCa: Ca influx rate
  0.0125,        // 11 - Ca uptake rate
  30.0,          // 12 - KCa current sigmoid midpoint
  0.1,           // 13 - gKCa: conductance of KCa current
  1,             // 14 - gCa: conductance of V dependent Ca current
  150,           // 15 - reversal potential of Ca current
  0.0            // 16 - IDC: baseline offset current
};

double *PN_p= stdPN_p;

const char *PN_p_text[PN_PNO]= {
  "0 - gNa: Na conductance in 1/(mOhms * cm^2)",
  "1 - ENa: Na equi potential in mV",
  "2 - gK: K conductance in 1/(mOhms * cm^2)",
  "3 - EK: K equi potential in mV",
  "4 - gl: leak conductance in 1/(mOhms * cm^2)",
  "5 - El: leak equi potential in mV",
  "6 - gKl: potassium leakage conductivity",
  "7 - EKl: potassium leakage equi pot in mV",
  "8 - V0: ~ total equi potential (?)",
  "9 - Cmem: membr. capacity density in muF/cm^2",
  "10 - kCa: Ca influx rate",
  "11 - Ca uptake rate",
  "12 - KCa current sigmoid midpoint",
  "13 - gKCa: conductance of KCa current",
  "14 - gCa: conductance of V dependent Ca current",
  "15 - reversal potential of Ca current",
  "16 - IDC: baseline offset current"
};

double PN_INIVARS[PN_IVARNO]= {
  -60.0,                       // 0 - membrane potential E
  0.0529324,                   // 1 - prob. for Na channel activation m
  0.3176767,                   // 2 - prob. for not Na channel blocking h
  0.5961207,                   // 3 - prob. for K channel activation n
  0.1                          // 4 - Ca concentration 
};

const char *PN_INIVARSTEXT[PN_IVARNO]= {
  "0 - membrane potential E",
  "1 - prob. for Na channel activation m",
  "2 - prob. for not Na channel blocking h",
  "3 - prob. for K channel activation n",
  "4 - Ca concentration"
};


// HH neuron class itself

class PNneuron: public neuron
{
 private:
  double Isyn;
  double ICa;
  double IKCa;
  double _a, _b;
 public:
  PNneuron(int, double *);
  PNneuron(int, vector<int>, double *);
  ~PNneuron() { }
  inline virtual double E(double *);
  virtual void derivative(double *, double *);
};

#endif