//--------------------------------------------------------------------------
// Author: Thomas Nowotny
//
// Institute: Institute for Nonlinear Dynamics
// University of California San Diego
// La Jolla, CA 92093-0402
//
// email to: tnowotny@ucsd.edu
//
// initial version: 2005-08-17
//
//--------------------------------------------------------------------------
#ifndef CN_VALNEURON_H
#define CN_VALNEURON_H
#include "CN_neuron.h"
#include <cmath>
// parameters of the HH neuron, they are identical for all neurons used
// (and therefore made global to save memory)
#define Val_IVARNO 4
#define Val_PNO 10
double stdVal_p[Val_PNO]= {
7.15, // 0 - gNa: Na conductance in 1/(mOhms * cm^2)
50.0, // 1 - ENa: Na equi potential in mV
1.43, // 2 - gK: K conductance in 1/(mOhms * cm^2)
-95.0, // 3 - EK: K equi potential in mV
0.021, // 4 - gl: leak conductance in 1/(mOhms * cm^2)
-55.0, // 5 - El: leak equi potential in mV
0.00572, // 6 - gKl: potassium leakage conductivity
-95.0, // 7 - EKl: potassium leakage equi pot in mV
65.0, // 8 - V0: ~ total equi potential (?)
0.143 // 9 - Cmem: membr. capacity density in muF/cm^2
};
double *Val_p= stdVal_p;
const char *Val_p_text[Val_PNO]= {
"0 - gNa: Na conductance in 1/(mOhms * cm^2)",
"1 - ENa: Na equi potential in mV",
"2 - gK: K conductance in 1/(mOhms * cm^2)",
"3 - EK: K equi potential in mV",
"4 - gl: leak conductance in 1/(mOhms * cm^2)",
"5 - El: leak equi potential in mV",
"6 - gKl: potassium leakage conductivity",
"7 - EKl: potassium leakage equi pot in mV",
"8 - V0: ~ total equi potential (?)",
"9 - Cmem: membr. capacity density in muF/cm^2"
};
double Val_INIVARS[Val_IVARNO]= {
-60.0, // 0 - membrane potential E
0.0529324, // 1 - prob. for Na channel activation m
0.3176767, // 2 - prob. for not Na channel blocking h
0.5961207 // 3 - prob. for K channel activation n
};
const char *Val_INIVARSTEXT[Val_IVARNO]= {
"0 - membrane potential E",
"1 - prob. for Na channel activation m",
"2 - prob. for not Na channel blocking h",
"3 - prob. for K channel activation n"
};
// Valentins HH neuron class itself
class Valneuron: public neuron
{
private:
double Isyn;
double _a, _b;
public:
Valneuron(int, double *);
Valneuron(int, vector<int>, double *);
~Valneuron() { }
inline virtual double E(double *);
virtual void derivative(double *, double *);
};
#endif