/* Created by Language version: 6.0.2 */
/* NOT VECTORIZED */
#include <stdio.h>
#include <math.h>
#include "scoplib.h"
#undef PI
#include "md1redef.h"
#include "section.h"
#include "nrnoc_ml.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#undef exp
#define exp hoc_Exp
extern double hoc_Exp();
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
static double *_p; static Datum *_ppvar;
#define delta_t dt
#define gcalbar _p[0]
#define ica _p[1]
#define po _p[2]
#define m _p[3]
#define h _p[4]
#define s _p[5]
#define cai _p[6]
#define eca _p[7]
#define Dm _p[8]
#define Dh _p[9]
#define Ds _p[10]
#define _g _p[11]
#define _ion_cai *_ppvar[0].pval
#define _ion_eca *_ppvar[1].pval
#define _ion_ica *_ppvar[2].pval
#define _ion_dicadv *_ppvar[3].pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
static int hoc_nrnpointerindex = -1;
/* external NEURON variables */
extern double celsius;
extern double dt;
extern double t;
/* declaration of user functions */
static int _hoc_alph();
static int _hoc_alpm();
static int _hoc_efun();
static int _hoc_ghk();
static int _hoc_h2();
static int _hoc_rates();
static int _mechtype;
extern int nrn_get_mechtype();
static _hoc_setdata() {
Prop *_prop, *hoc_getdata_range();
_prop = hoc_getdata_range("can");
_p = _prop->param; _ppvar = _prop->dparam;
ret(1.);
}
/* connect user functions to hoc names */
static IntFunc hoc_intfunc[] = {
"setdata_can", _hoc_setdata,
"alph_can", _hoc_alph,
"alpm_can", _hoc_alpm,
"efun_can", _hoc_efun,
"ghk_can", _hoc_ghk,
"h2_can", _hoc_h2,
"rates_can", _hoc_rates,
0, 0
};
#define alph alph_can
#define alpm alpm_can
#define efun efun_can
#define ghk ghk_can
#define h2 h2_can
extern double alph();
extern double alpm();
extern double efun();
extern double ghk();
extern double h2();
/* declare global and static user variables */
#define hinf hinf_can
double hinf = 0;
#define ki ki_can
double ki = 0.025;
#define minf minf_can
double minf = 0;
#define s_inf s_inf_can
double s_inf = 0;
#define taumin taumin_can
double taumin = 2;
#define th0 th0_can
double th0 = 75;
#define tm0 tm0_can
double tm0 = 1.5;
#define vhalfh vhalfh_can
double vhalfh = -40;
#define vhalfm vhalfm_can
double vhalfm = -21;
#define zetah zetah_can
double zetah = 2;
#define zetam zetam_can
double zetam = -3.4;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"ki_can", "mM",
"vhalfm_can", "mV",
"vhalfh_can", "mV",
"tm0_can", "ms",
"th0_can", "ms",
"taumin_can", "ms",
"gcalbar_can", "mho/cm2",
"ica_can", "mA/cm2",
0,0
};
static double h0 = 0;
static double m0 = 0;
static double s0 = 0;
static double v = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"ki_can", &ki,
"zetam_can", &zetam,
"zetah_can", &zetah,
"vhalfm_can", &vhalfm,
"vhalfh_can", &vhalfh,
"tm0_can", &tm0,
"th0_can", &th0,
"taumin_can", &taumin,
"minf_can", &minf,
"hinf_can", &hinf,
"s_inf_can", &s_inf,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static nrn_alloc(), nrn_init(), nrn_state();
static nrn_cur(), nrn_jacob();
static int _ode_count(), _ode_map(), _ode_spec(), _ode_matsol();
extern int nrn_cvode_;
#define _cvode_ieq _ppvar[4]._i
/* connect range variables in _p that hoc is supposed to know about */
static char *_mechanism[] = {
"6.0.2",
"can",
"gcalbar_can",
0,
"ica_can",
"po_can",
0,
"m_can",
"h_can",
"s_can",
0,
0};
static Symbol* _ca_sym;
static nrn_alloc(_prop)
Prop *_prop;
{
Prop *prop_ion, *need_memb();
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 12);
/*initialize range parameters*/
gcalbar = 0;
_prop->param = _p;
_prop->param_size = 12;
_ppvar = nrn_prop_datum_alloc(_mechtype, 5);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_ca_sym);
nrn_promote(prop_ion, 1, 1);
_ppvar[0].pval = &prop_ion->param[1]; /* cai */
_ppvar[1].pval = &prop_ion->param[0]; /* eca */
_ppvar[2].pval = &prop_ion->param[3]; /* ica */
_ppvar[3].pval = &prop_ion->param[4]; /* _ion_dicadv */
}
static _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
_can_reg() {
int _vectorized = 0;
_initlists();
ion_reg("ca", -10000.);
_ca_sym = hoc_lookup("ca_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, _vectorized);
_mechtype = nrn_get_mechtype(_mechanism[1]);
hoc_register_dparam_size(_mechtype, 5);
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 can /home/jg/ModelosNeuron/ProgramsNeuronCA1_JG/CleanVersion_CA1_JG_15Mar09/mechanism/x86_64/can.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static double FARADAY = 96485.3;
static double R = 8.31342;
static int _reset;
static char *modelname = "N-type calcium channel ";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static _modl_cleanup(){ _match_recurse=1;}
static rates();
static int _ode_spec1(), _ode_matsol1();
static int _slist1[3], _dlist1[3];
static int states();
double h2 ( _lcai )
double _lcai ;
{
double _lh2;
_lh2 = ki / ( ki + _lcai ) ;
return _lh2;
}
static int _hoc_h2() {
double _r;
_r = h2 ( *getarg(1) ) ;
ret(_r);
}
double ghk ( _lv , _lci , _lco )
double _lv , _lci , _lco ;
{
double _lghk;
double _lz , _leci , _leco ;
_lz = ( 1e-3 ) * 2.0 * FARADAY * _lv / ( R * ( celsius + 273.15 ) ) ;
_leco = _lco * efun ( _lz ) ;
_leci = _lci * efun ( - _lz ) ;
_lghk = ( .001 ) * 2.0 * FARADAY * ( _leci - _leco ) ;
return _lghk;
}
static int _hoc_ghk() {
double _r;
_r = ghk ( *getarg(1) , *getarg(2) , *getarg(3) ) ;
ret(_r);
}
double efun ( _lz )
double _lz ;
{
double _lefun;
if ( fabs ( _lz ) < 1e-4 ) {
_lefun = 1.0 - _lz / 2.0 ;
}
else {
_lefun = _lz / ( exp ( _lz ) - 1.0 ) ;
}
return _lefun;
}
static int _hoc_efun() {
double _r;
_r = efun ( *getarg(1) ) ;
ret(_r);
}
/*CVODE*/
static int _ode_spec1 () {_reset=0;
{
rates ( v , cai ) ;
Dm = ( minf - m ) / tm0 ;
Dh = ( hinf - h ) / th0 ;
Ds = ( s_inf - s ) / taumin ;
}
return _reset;
}
static int _ode_matsol1() {
rates ( v , cai ) ;
Dm = Dm / (1. - dt*( ( ( ( - 1.0 ) ) ) / tm0 )) ;
Dh = Dh / (1. - dt*( ( ( ( - 1.0 ) ) ) / th0 )) ;
Ds = Ds / (1. - dt*( ( ( ( - 1.0 ) ) ) / taumin )) ;
}
/*END CVODE*/
static int states () {_reset=0;
{
rates ( v , cai ) ;
m = m + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / tm0)))*(- ( ( ( minf ) ) / tm0 ) / ( ( ( ( - 1.0) ) ) / tm0 ) - m) ;
h = h + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / th0)))*(- ( ( ( hinf ) ) / th0 ) / ( ( ( ( - 1.0) ) ) / th0 ) - h) ;
s = s + (1. - exp(dt*(( ( ( - 1.0 ) ) ) / taumin)))*(- ( ( ( s_inf ) ) / taumin ) / ( ( ( ( - 1.0) ) ) / taumin ) - s) ;
}
return 0;
}
static int rates ( _lv , _lcai )
double _lv , _lcai ;
{
double _la , _lb , _lalpha2 ;
_la = alpm ( _lv ) ;
minf = 1.0 / ( 1.0 + _la ) ;
_lb = alph ( _lv ) ;
hinf = 1.0 / ( 1.0 + _lb ) ;
_lalpha2 = pow( ( ki / _lcai ) , 2.0 ) ;
s_inf = _lalpha2 / ( _lalpha2 + 1.0 ) ;
return 0; }
static int _hoc_rates() {
double _r;
_r = 1.;
rates ( *getarg(1) , *getarg(2) ) ;
ret(_r);
}
double alpm ( _lv )
double _lv ;
{
double _lalpm;
_lalpm = exp ( 1.e-3 * zetam * ( _lv - vhalfm ) * 9.648e4 / ( 8.315 * ( 273.16 + celsius ) ) ) ;
return _lalpm;
}
static int _hoc_alpm() {
double _r;
_r = alpm ( *getarg(1) ) ;
ret(_r);
}
double alph ( _lv )
double _lv ;
{
double _lalph;
_lalph = exp ( 1.e-3 * zetah * ( _lv - vhalfh ) * 9.648e4 / ( 8.315 * ( 273.16 + celsius ) ) ) ;
return _lalph;
}
static int _hoc_alph() {
double _r;
_r = alph ( *getarg(1) ) ;
ret(_r);
}
static int _ode_count(_type) int _type;{ return 3;}
static int _ode_spec(_nd, _pp, _ppd) Node* _nd; double* _pp; Datum* _ppd; {
_p = _pp; _ppvar = _ppd; v = NODEV(_nd);
cai = _ion_cai;
eca = _ion_eca;
_ode_spec1();
}
static int _ode_map(_ieq, _pv, _pvdot, _pp, _ppd, _atol, _type) int _ieq, _type; double** _pv, **_pvdot, *_pp, *_atol; Datum* _ppd; {
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 3; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static int _ode_matsol(_nd, _pp, _ppd) Node* _nd; double* _pp; Datum* _ppd; {
_p = _pp; _ppvar = _ppd; v = NODEV(_nd);
cai = _ion_cai;
eca = _ion_eca;
_ode_matsol1();
}
static initmodel() {
int _i; double _save;_ninits++;
_save = t;
t = 0.0;
{
h = h0;
m = m0;
s = s0;
{
rates ( v , cai ) ;
m = minf ;
h = hinf ;
s = s_inf ;
}
_sav_indep = t; t = _save;
}
}
static nrn_init(_ml, _type) _Memb_list* _ml; int _type;{
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
cai = _ion_cai;
eca = _ion_eca;
initmodel();
}}
static double _nrn_current(_v) double _v;{double _current=0.;v=_v;{ {
po = m * m * h ;
ica = gcalbar * po * h2 ( cai ) * ( v - eca ) ;
}
_current += ica;
} return _current;
}
static nrn_cur(_ml, _type) _Memb_list* _ml; int _type;{
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
cai = _ion_cai;
eca = _ion_eca;
_g = _nrn_current(_v + .001);
{ static double _dica;
_dica = ica;
_rhs = _nrn_current(_v);
_ion_dicadv += (_dica - ica)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ica += ica ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}}
static nrn_jacob(_ml, _type) _Memb_list* _ml; int _type;{
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}}
static nrn_state(_ml, _type) _Memb_list* _ml; int _type;{
double _break, _save;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
_break = t + .5*dt; _save = t; delta_t = dt;
v=_v;
{
cai = _ion_cai;
eca = _ion_eca;
{ {
for (; t < _break; t += delta_t) {
error = states();
if(error){fprintf(stderr,"at line 71 in file can.mod:\n SOLVE states METHOD cnexp\n"); nrn_complain(_p); abort_run(error);}
}}
t = _save;
} }}
}
static terminal(){}
static _initlists() {
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(m) - _p; _dlist1[0] = &(Dm) - _p;
_slist1[1] = &(h) - _p; _dlist1[1] = &(Dh) - _p;
_slist1[2] = &(s) - _p; _dlist1[2] = &(Ds) - _p;
_first = 0;
}