/* Created by Language version: 6.0.2 */
/* NOT VECTORIZED */
#include <stdio.h>
#include <math.h>
#include "scoplib.h"
#undef PI
#include "md1redef.h"
#include "section.h"
#include "nrnoc_ml.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#undef exp
#define exp hoc_Exp
extern double hoc_Exp();
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
static double *_p; static Datum *_ppvar;
#define delta_t dt
#define gkbar _p[0]
#define ik _p[1]
#define cst _p[2]
#define ost _p[3]
#define ist _p[4]
#define cai _p[5]
#define ek _p[6]
#define k1 _p[7]
#define k2 _p[8]
#define k3 _p[9]
#define k4 _p[10]
#define q10 _p[11]
#define Dcst _p[12]
#define Dost _p[13]
#define Dist _p[14]
#define _g _p[15]
#define _ion_ek *_ppvar[0].pval
#define _ion_ik *_ppvar[1].pval
#define _ion_dikdv *_ppvar[2].pval
#define _ion_cai *_ppvar[3].pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
static int hoc_nrnpointerindex = -1;
/* external NEURON variables */
extern double celsius;
extern double dt;
extern double t;
/* declaration of user functions */
static int _hoc_alpha();
static int _hoc_alp();
static int _hoc_rates();
static int _mechtype;
extern int nrn_get_mechtype();
static _hoc_setdata() {
Prop *_prop, *hoc_getdata_range();
_prop = hoc_getdata_range("mykca");
_p = _prop->param; _ppvar = _prop->dparam;
ret(1.);
}
/* connect user functions to hoc names */
static IntFunc hoc_intfunc[] = {
"setdata_mykca", _hoc_setdata,
"alpha_mykca", _hoc_alpha,
"alp_mykca", _hoc_alp,
"rates_mykca", _hoc_rates,
0, 0
};
#define alpha alpha_mykca
#define alp alp_mykca
extern double alpha();
extern double alp();
/* declare global and static user variables */
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"gkbar_mykca", "S/cm2",
"ik_mykca", "mA/cm2",
0,0
};
static double cst0 = 0;
static double ist0 = 0;
static double ost0 = 0;
static double v = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static nrn_alloc(), nrn_init(), nrn_state();
static nrn_cur(), nrn_jacob();
static int _ode_count(), _ode_map(), _ode_spec(), _ode_matsol();
extern int nrn_cvode_;
#define _cvode_ieq _ppvar[4]._i
/* connect range variables in _p that hoc is supposed to know about */
static char *_mechanism[] = {
"6.0.2",
"mykca",
"gkbar_mykca",
0,
"ik_mykca",
0,
"cst_mykca",
"ost_mykca",
"ist_mykca",
0,
0};
static Symbol* _k_sym;
static Symbol* _ca_sym;
static nrn_alloc(_prop)
Prop *_prop;
{
Prop *prop_ion, *need_memb();
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 16);
/*initialize range parameters*/
gkbar = 0.001;
_prop->param = _p;
_prop->param_size = 16;
_ppvar = nrn_prop_datum_alloc(_mechtype, 5);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_k_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[0].pval = &prop_ion->param[0]; /* ek */
_ppvar[1].pval = &prop_ion->param[3]; /* ik */
_ppvar[2].pval = &prop_ion->param[4]; /* _ion_dikdv */
prop_ion = need_memb(_ca_sym);
nrn_promote(prop_ion, 1, 0);
_ppvar[3].pval = &prop_ion->param[1]; /* cai */
}
static _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static _singlechan_declare1();
_kct_reg() {
int _vectorized = 0;
_initlists();
ion_reg("k", -10000.);
ion_reg("ca", -10000.);
_k_sym = hoc_lookup("k_ion");
_ca_sym = hoc_lookup("ca_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, _vectorized);
_mechtype = nrn_get_mechtype(_mechanism[1]);
hoc_register_dparam_size(_mechtype, 5);
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
hoc_reg_singlechan(_mechtype, _singlechan_declare1);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 mykca /home/jg/ModelosNeuron/ProgramsNeuronCA1_JG/CleanVersion_CA1_JG_15Mar09/mechanism/x86_64/kct.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static int _reset;
static char *modelname = "Kct current";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static _modl_cleanup(){ _match_recurse=1;}
static rates();
extern double *_getelm();
#define _MATELM1(row,col) *(_getelm(row + 1, col + 1))
#define _RHS1(arg) _coef1[arg + 1]
static double *_coef1;
#define _linmat1 1
static void* _sparseobj1;
static void* _cvsparseobj1;
static int _ode_spec1(), _ode_matsol1();
static int _slist1[3], _dlist1[3]; static double *_temp1;
static int kin();
static int kin ()
{_reset=0;
{
double b_flux, f_flux, _term; int _i;
{int _i; double _dt1 = 1.0/delta_t;
for(_i=1;_i<3;_i++){
_RHS1(_i) = -_dt1*(_p[_slist1[_i]] - _p[_dlist1[_i]]);
_MATELM1(_i, _i) = _dt1;
} }
rates ( v , cai ) ;
/* ~ cst <-> ost ( k3 , k4 )*/
f_flux = k3 * cst ;
b_flux = k4 * ost ;
_RHS1( 1) -= (f_flux - b_flux);
_RHS1( 2) += (f_flux - b_flux);
_term = k3 ;
_MATELM1( 1 ,1) += _term;
_MATELM1( 2 ,1) -= _term;
_term = k4 ;
_MATELM1( 1 ,2) -= _term;
_MATELM1( 2 ,2) += _term;
/*REACTION*/
/* ~ ost <-> ist ( k1 , 0.0 )*/
f_flux = k1 * ost ;
b_flux = 0.0 * ist ;
_RHS1( 2) -= (f_flux - b_flux);
_term = k1 ;
_MATELM1( 2 ,2) += _term;
_term = 0.0 ;
_MATELM1( 2 ,0) -= _term;
/*REACTION*/
/* ~ ist <-> cst ( k2 , 0.0 )*/
f_flux = k2 * ist ;
b_flux = 0.0 * cst ;
_RHS1( 1) += (f_flux - b_flux);
_term = k2 ;
_MATELM1( 1 ,0) -= _term;
_term = 0.0 ;
_MATELM1( 1 ,1) += _term;
/*REACTION*/
/* cst + ost + ist = 1.0 */
_RHS1(0) = 1.0;
_MATELM1(0, 0) = 1;
_RHS1(0) -= ist ;
_MATELM1(0, 2) = 1;
_RHS1(0) -= ost ;
_MATELM1(0, 1) = 1;
_RHS1(0) -= cst ;
/*CONSERVATION*/
} return _reset;
}
static int rates ( _lv , _lcai )
double _lv , _lcai ;
{
k1 = alp ( 0.1 , _lv , - 10.0 , 1.0 ) ;
k2 = alp ( 0.1 , _lv , - 120.0 , - 10.0 ) ;
k3 = alpha ( 0.001 , 1.0 , _lv , - 20.0 , 7.0 ) * 1.0e8 * pow( ( _lcai * 1.0 ) , 3.0 ) ;
k4 = alp ( 0.01 , _lv , - 44.0 , - 5.0 ) ;
return 0; }
static int _hoc_rates() {
double _r;
_r = 1.;
rates ( *getarg(1) , *getarg(2) ) ;
ret(_r);
}
double alpha ( _ltmin , _ltmax , _lv , _lvhalf , _lk )
double _ltmin , _ltmax , _lv , _lvhalf , _lk ;
{
double _lalpha;
_lalpha = 1.0 / ( _ltmin + 1.0 / ( 1.0 / ( _ltmax - _ltmin ) + exp ( ( _lv - _lvhalf ) / _lk ) * 1.0 ) ) ;
return _lalpha;
}
static int _hoc_alpha() {
double _r;
_r = alpha ( *getarg(1) , *getarg(2) , *getarg(3) , *getarg(4) , *getarg(5) ) ;
ret(_r);
}
double alp ( _ltmin , _lv , _lvhalf , _lk )
double _ltmin , _lv , _lvhalf , _lk ;
{
double _lalp;
_lalp = 1.0 / ( _ltmin + exp ( - ( _lv - _lvhalf ) / _lk ) * 1.0 ) ;
return _lalp;
}
static int _hoc_alp() {
double _r;
_r = alp ( *getarg(1) , *getarg(2) , *getarg(3) , *getarg(4) ) ;
ret(_r);
}
/*CVODE ode begin*/
static int _ode_spec1() {_reset=0;{
double b_flux, f_flux, _term; int _i;
{int _i; for(_i=0;_i<3;_i++) _p[_dlist1[_i]] = 0.0;}
rates ( v , cai ) ;
/* ~ cst <-> ost ( k3 , k4 )*/
f_flux = k3 * cst ;
b_flux = k4 * ost ;
Dcst -= (f_flux - b_flux);
Dost += (f_flux - b_flux);
/*REACTION*/
/* ~ ost <-> ist ( k1 , 0.0 )*/
f_flux = k1 * ost ;
b_flux = 0.0 * ist ;
Dost -= (f_flux - b_flux);
Dist += (f_flux - b_flux);
/*REACTION*/
/* ~ ist <-> cst ( k2 , 0.0 )*/
f_flux = k2 * ist ;
b_flux = 0.0 * cst ;
Dist -= (f_flux - b_flux);
Dcst += (f_flux - b_flux);
/*REACTION*/
/* cst + ost + ist = 1.0 */
/*CONSERVATION*/
} return _reset;
}
/*CVODE matsol*/
static int _ode_matsol1() {_reset=0;{
double b_flux, f_flux, _term; int _i;
b_flux = f_flux = 0.;
{int _i; double _dt1 = 1.0/dt;
for(_i=0;_i<3;_i++){
_RHS1(_i) = _dt1*(_p[_dlist1[_i]]);
_MATELM1(_i, _i) = _dt1;
} }
rates ( v , cai ) ;
/* ~ cst <-> ost ( k3 , k4 )*/
_term = k3 ;
_MATELM1( 1 ,1) += _term;
_MATELM1( 2 ,1) -= _term;
_term = k4 ;
_MATELM1( 1 ,2) -= _term;
_MATELM1( 2 ,2) += _term;
/*REACTION*/
/* ~ ost <-> ist ( k1 , 0.0 )*/
_term = k1 ;
_MATELM1( 2 ,2) += _term;
_MATELM1( 0 ,2) -= _term;
_term = 0.0 ;
_MATELM1( 2 ,0) -= _term;
_MATELM1( 0 ,0) += _term;
/*REACTION*/
/* ~ ist <-> cst ( k2 , 0.0 )*/
_term = k2 ;
_MATELM1( 0 ,0) += _term;
_MATELM1( 1 ,0) -= _term;
_term = 0.0 ;
_MATELM1( 0 ,1) -= _term;
_MATELM1( 1 ,1) += _term;
/*REACTION*/
/* cst + ost + ist = 1.0 */
/*CONSERVATION*/
} return _reset;
}
/*CVODE end*/
/*Single Channel begin*/
static int _singlechan1(_v, _pp, _ppd) double _v; double* _pp; Datum* _ppd;{
_p = _pp; _ppvar = _ppd; v = _v; _reset=0;
{
double b_flux, f_flux, _term; int _i;
rates ( v , cai ) ;
/* ~ cst <-> ost ( k3 , k4 )*/
_nrn_single_react(1 ,2 , k3);
_nrn_single_react(2 ,1 , k4);
/*REACTION*/
/* ~ ost <-> ist ( k1 , 0.0 )*/
_nrn_single_react(2 ,0 , k1);
_nrn_single_react(0 ,2 , 0.0);
/*REACTION*/
/* ~ ist <-> cst ( k2 , 0.0 )*/
_nrn_single_react(0 ,1 , k2);
_nrn_single_react(1 ,0 , 0.0);
/*REACTION*/
/* cst + ost + ist = 1.0 */
/*CONSERVATION*/
} return _reset;
}
static _singlechan_declare1() {
_singlechan_declare(_singlechan1, _slist1, 3);
}
/*Single Channel end*/
static int _ode_count(_type) int _type;{ return 3;}
static int _ode_spec(_nd, _pp, _ppd) Node* _nd; double* _pp; Datum* _ppd; {
_p = _pp; _ppvar = _ppd; v = NODEV(_nd);
ek = _ion_ek;
cai = _ion_cai;
_ode_spec1();
}
static int _ode_map(_ieq, _pv, _pvdot, _pp, _ppd, _atol, _type) int _ieq, _type; double** _pv, **_pvdot, *_pp, *_atol; Datum* _ppd; {
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 3; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static int _ode_matsol(_nd, _pp, _ppd) Node* _nd; double* _pp; Datum* _ppd; {
_p = _pp; _ppvar = _ppd; v = NODEV(_nd);
ek = _ion_ek;
cai = _ion_cai;
_cvode_sparse(&_cvsparseobj1, 3, _dlist1, _p, _ode_matsol1, &_coef1);
}
static initmodel() {
int _i; double _save;_ninits++;
_save = t;
t = 0.0;
{
cst = cst0;
ist = ist0;
ost = ost0;
{
error = _ss_sparse(&_sparseobj1, 3, _slist1, _dlist1, _p, &t, delta_t, kin,&_coef1, _linmat1);
if(error){fprintf(stderr,"at line 55 in file kct.mod:\n SOLVE kin STEADYSTATE sparse\n"); nrn_complain(_p); abort_run(error);}
}
_sav_indep = t; t = _save;
}
}
static nrn_init(_ml, _type) _Memb_list* _ml; int _type;{
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
ek = _ion_ek;
cai = _ion_cai;
initmodel();
}}
static double _nrn_current(_v) double _v;{double _current=0.;v=_v;{ {
ik = gkbar * ost * ( v - ek ) ;
}
_current += ik;
} return _current;
}
static nrn_cur(_ml, _type) _Memb_list* _ml; int _type;{
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
ek = _ion_ek;
cai = _ion_cai;
_g = _nrn_current(_v + .001);
{ static double _dik;
_dik = ik;
_rhs = _nrn_current(_v);
_ion_dikdv += (_dik - ik)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ik += ik ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}}
static nrn_jacob(_ml, _type) _Memb_list* _ml; int _type;{
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}}
static nrn_state(_ml, _type) _Memb_list* _ml; int _type;{
double _break, _save;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
_break = t + .5*dt; _save = t; delta_t = dt;
v=_v;
{
ek = _ion_ek;
cai = _ion_cai;
{ {
for (; t < _break; t += delta_t) {
error = sparse(&_sparseobj1, 3, _slist1, _dlist1, _p, &t, delta_t, kin,&_coef1, _linmat1);
if(error){fprintf(stderr,"at line 50 in file kct.mod:\n SOLVE kin METHOD sparse\n"); nrn_complain(_p); abort_run(error);}
}}
t = _save;
} }}
}
static terminal(){}
static _initlists() {
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(ist) - _p; _dlist1[0] = &(Dist) - _p;
_slist1[1] = &(cst) - _p; _dlist1[1] = &(Dcst) - _p;
_slist1[2] = &(ost) - _p; _dlist1[2] = &(Dost) - _p;
_first = 0;
}