// Initialize the experiment
v_init = -70
timestart = 3
forall {insert cldifus}
forall {Ra = 100}
// *******************************************************
// maximum segment length 5um and nseg = odd multiple of 5
// *******************************************************
apical_dendrite[dendr] {nseg=int((int(L/5)+5)/10)*10+5}
for i=0,dendr_pre.size()-1 {
apical_dendrite[dendr_pre.x[i]] {nseg=int((int(L/5)+5)/10)*10+5}
}
for i=0,dendr_post.size()-1 {
apical_dendrite[dendr_post.x[i]] {nseg=int((int(L/5)+5)/10)*10+5}
}
for i=0,dendr_side.size()-1 {
apical_dendrite[dendr_side.x[i]] {nseg=int((int(L/5)+5)/10)*10+5}
}
// *******************************************************
objref dendrv, posv, dendrv_side, posv_side, identv
dendrv = new Vector(0)
posv = new Vector(0)
dendrv_side = new Vector(0)
posv_side = new Vector(0)
identv = new Vector(0)
dendrv.append(dendr)
posv.append(synpos)
identv.append(0)
// *******************************************************
// The following lines define the recording sites at segmentation points along the dendrites which are closest to the distances defined by "sl".
// *******************************************************
access apical_dendrite[dendr]
orig = distance(synpos)
curr_pos = synpos
curr_dist = orig
curr_seg = 0
bc = 1
if (curr_seg<sl.size()) {
if (curr_pos-sl.x[curr_seg]/L<0) {
bc=0
}
} else {
bc=0
}
while (bc>0) {
curr_dist = distance(curr_pos-sl.x[curr_seg]/L)
curr_pos = (curr_dist-distance(0))/L
dendrv.append(dendr)
posv.append(curr_pos)
identv.append(-1)
dist_D = orig - sl_orig.sum(0,curr_seg) - curr_dist
curr_seg = curr_seg+1
if (curr_seg<sl.size()) {
sl.x[curr_seg] = sl.x[curr_seg]-dist_D
if (curr_pos-sl.x[curr_seg]/L<0) {
bc=0
}
} else {
bc=0
}
}
if (curr_seg<sl.size()) {
sl.x[curr_seg] = sl.x[curr_seg]-(curr_dist-distance(0))
}
for i=0,dendr_pre.size()-1 {
access apical_dendrite[dendr_pre.x[i]]
curr_dist = distance(1)
curr_pos = 1
bc = 1
if (curr_seg<sl.size()) {
if (curr_pos-sl.x[curr_seg]/L<0) {
bc=0
}
} else {
bc=0
}
while (bc>0) {
curr_dist = distance(curr_pos-sl.x[curr_seg]/L)
curr_pos = (curr_dist-distance(0))/L
dendrv.append(dendr_pre.x[i])
posv.append(curr_pos)
identv.append(-1)
dist_D = orig - sl_orig.sum(0,curr_seg) - curr_dist
curr_seg = curr_seg+1
if (i<dendr_side.size()) {
apical_dendrite[dendr_side.x[i]] {
L_side = L
orig_side = distance(0)}
if ((distance(1)-curr_dist)<L_side) {
dendrv_side.append(dendr_side.x[i])
posv_side.append((distance(1)-curr_dist)/L_side)
ident_side.append(orig_side)
}
}
if (curr_seg<sl.size()) {
sl.x[curr_seg] = sl.x[curr_seg]-dist_D
if (curr_pos-sl.x[curr_seg]/L<0) {
bc=0
}
} else {
bc=0
}
}
if (curr_seg<sl.size()) {
sl.x[curr_seg] = sl.x[curr_seg]-(curr_dist-distance(0))
}
}
sl = sl_orig.c
access apical_dendrite[dendr]
orig = distance(synpos)
curr_pos = synpos
curr_dist = orig
curr_seg = 0
bc = 1
if (curr_seg<sl.size()) {
if (curr_pos+sl.x[curr_seg]/L>1) {
bc=0
}
} else {
bc=0
}
while (bc>0) {
curr_dist = distance(curr_pos+sl.x[curr_seg]/L)
curr_pos = (curr_dist-distance(0))/L
dendrv.append(dendr)
posv.append(curr_pos)
identv.append(1)
dist_D = orig + sl_orig.sum(0,curr_seg) - curr_dist
curr_seg = curr_seg+1
if (curr_seg<sl.size()) {
sl.x[curr_seg] = sl.x[curr_seg]+dist_D
if (curr_pos+sl.x[curr_seg]/L>1) {
bc=0
}
} else {
bc=0
}
}
if (curr_seg<sl.size()) {
sl.x[curr_seg] = sl.x[curr_seg]-(distance(1)-curr_dist)
}
for i=0,dendr_post.size()-1 {
access apical_dendrite[dendr_post.x[i]]
curr_dist = distance(0)
curr_pos = 0
bc = 1
if (curr_seg<sl.size()) {
if (curr_pos+sl.x[curr_seg]/L>1) {
bc=0
}
} else {
bc=0
}
while (bc>0) {
curr_dist = distance(curr_pos+sl.x[curr_seg]/L)
curr_pos = (curr_dist-distance(0))/L
dendrv.append(dendr_post.x[i])
posv.append(curr_pos)
identv.append(1)
dist_D = orig + sl_orig.sum(0,curr_seg) - curr_dist
curr_seg = curr_seg+1
if (curr_seg<sl.size()) {
sl.x[curr_seg] = sl.x[curr_seg]+dist_D
if (curr_pos+sl.x[curr_seg]/L>1) {
bc=0
}
} else {
bc=0
}
}
if (curr_seg<sl.size()) {
sl.x[curr_seg] = sl.x[curr_seg]-(distance(1)-curr_dist)
}
}
dendrv.append(dendrv_side)
posv.append(posv_side)
identv.append(ident_side)
for i=0,dendrv.size()-1 {
print dendrv.x[i]
print posv.x[i]
}
// *******************************************************
// Run the experiment
// *******************************************************
nchan = dendrv.size()*2+2
print nchan
access soma
objref stimulator1, stimulator2, stimulator3, datamat, paramat
objref vsoma
objref vdendr[(nchan-2)/2]
objref ca[(nchan-2)/2]
objref casoma
objref tvec
objref distv
datamat = new Matrix()
paramat = new Matrix(4,numi*numj*numk+1)
distv = new Vector()
vsoma = new Vector()
for i=0,(nchan-2)/2-1 {
vdendr[i] = new Vector()
ca[i] = new Vector()
}
casoma = new Vector()
tvec = new Vector()
objref syn1[numi], syn2[numi], syn3[numi]
finitialize(v_init)
fcurrent()
run()
soma{
stimulator1 = new IClamp(0.5)
stimulator1.del=stimstart
stimulator1.dur=1
stimulator1.amp=3
}
// loop over position
for ic=0,numi-1 {
if (ic>0) {
syn1[ic-1].gmax = 0
}
if (numi>1) {
xvari = posv.x[ic]
} else {
xvari = synpos
}
// loop over conductance
for kc=0,numk-1 {
if (kc==0) {
gi = 0
} else {
gi = gi_0 + gi_inc*(kc-1)
}
// loop over time
for jc=0,numj-1 {
count = ic*numk*numj+kc*numj+jc
if (numj>1) {
tstart = stimstart-timestart+jc*0.5
} else {
tstart = stimstart
}
apical_dendrite[dendrv.x[ic]] {
syn1[ic] = new gaba(xvari)
syn1[ic].onset = tstart
syn1[ic].tau = tau
syn1[ic].gmax = gi
syn1[ic].e = v_init
}
distv.resize(nchan)
access soma
vsoma.record(&soma[0].v(0.5))
casoma.record(&soma[0].cai(0.5))
distv.x[0]=distance(0.5)
for i=0,(nchan-2)/2-1 {
vdendr[i].record(&apical_dendrite[dendrv.x[i]].v(posv.x[i]))
ca[i].record(&apical_dendrite[dendrv.x[i]].cai(posv.x[i]))
access apical_dendrite[dendrv.x[i]]
distv.x[i+1]=distance(posv.x[i])
}
tvec.record(&t)
finitialize(v_init)
fcurrent()
run()
datamat.resize(vsoma.size()-(stimstart-timestart-1)/dt+1,nchan*numi*numj*numk+3)
print (numk*numj*ic+numj*kc+jc+1)/(numi*numk*numj)
datamat.setcol(nchan*(count),vsoma.remove(0,(stimstart-timestart-1)/dt))
for i=0,(nchan-2)/2-1 {
datamat.setcol(nchan*(count)+i+1,vdendr[i].remove(0,(stimstart-timestart-1)/dt))
}
datamat.setcol(nchan*(count)+(nchan-2)/2+1,casoma.remove(0,(stimstart-timestart-1)/dt))
for i=0,(nchan-2)/2-1 {
datamat.setcol(nchan*(count)+(nchan-2)/2+1+i+1,ca[i].remove(0,(stimstart-timestart-1)/dt))
}
paramat.x[0][(ic*numk*numj+kc*numj+jc)] = stimstart
access apical_dendrite[dendrv.x[ic]]
paramat.x[1][(ic*numk*numj+kc*numj+jc)] = distance(xvari)
paramat.x[2][(ic*numk*numj+kc*numj+jc)] = tstart
paramat.x[3][(ic*numk*numj+kc*numj+jc)] = gi
}
}
syn1[ic].gmax = 0
//syn2[ic].gmax = 0
//syn3[ic].gmax = 0
}
paramat.x[0][numi*numj*numk] = nchan
paramat.x[1][numi*numj*numk] = numi
paramat.x[2][numi*numj*numk] = numj
paramat.x[3][numi*numj*numk] = numk
datamat.setcol(nchan*numi*numj*numk,tvec.remove(0,(stimstart-timestart-1)/dt))
datamat.setcol(nchan*numi*numj*numk+1,distv)
datamat.setcol(nchan*numi*numj*numk+2,identv)
datamat.fprint(0,savdata,"%g;")
paramat.fprint(0,savparam,"%g;")
savdata.close()
savparam.close()