TITLE n-calcium channel
: n-type calcium channel
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
FARADAY = 96520 (coul)
R = 8.3134 (joule/degK)
KTOMV = .0853 (mV/degC)
}
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX mycan
USEION ca READ cai,cao WRITE ica
RANGE gcanbar, gcan, hinf, minf, taum, tauh, facm, fach, ica
}
PARAMETER {
dt (ms)
v (mV)
celsius = 6.3 (degC)
gcanbar = 0 (mho/cm2)
cai=5.e-5 (mM)
cao = 2 (mM)
tadjm
tadjh
eca = 140
}
STATE {
m h
}
ASSIGNED {
ica (mA/cm2)
gcan (mho/cm2)
minf
hinf
taum
tauh
facm
fach
}
INITIAL {
tadjm= 0.3*3.55^((celsius-23.5)/10)
tadjh= 0.4*2.8^((celsius-23.5)/10)
rates(v)
m = minf
h = hinf
gcan = gcanbar*m*m*h
}
BREAKPOINT {
SOLVE states
gcan = gcanbar*m*m*h
: gcan = gcanbar*m*h
ica = gcan*ghk(v,cai,cao,2)
}
:if state_cagk is called from hoc, garbage or segmentation violation will
:result because range variables won't have correct pointer. This is because
: only BREAKPOINT sets up the correct pointers to range variables.
PROCEDURE states() { : exact when v held constant; integrates over dt step
rates(v)
m = m + facm*(minf - m)
h = h + fach*(hinf - h)
VERBATIM
return 0;
ENDVERBATIM
}
PROCEDURE rates(v (mV)) { :callable from hoc
: taum = (1/(exp((v+131.6)/-16.7)+exp((v+16.8)/18.2)) + 0.612) / tadjm
: taum = 0.1*((exp((v+11)/-200)+exp((v+11)/200))) / tadjm
: taum = 3*exp((v+11)/-200)/tadjm
: taum = 100*(1- 0.95/(1+exp((v+11)/-200)))
taum = 15*(0.055*(25.01 - v)/(exp((25.01-v)/10) - 1)+9.4*exp((-63.01-v)/20))
minf = 1/(1+exp(-(v+11)/8.3))
facm = (1 - exp(-dt/taum))
: if (v<-80)
: { tauh = exp((v+467)/66.6) / tadjh }
: else
: { tauh = (exp((v+21.88)/-10.52)+28) / tadjh }
: tauh = 15*exp((v+11)/-200) / tadjh
: tauh = 10*(1+ 2.5/(1+exp((v+11)/-10)))
tauh = 10/(0.01*(10.01 - v)/(exp((10.01-v)/10) - 1)+20*exp((-110.01-v)/20))
hinf = 1/(1+exp((v+44)/9.2))
fach = (1 - exp(-dt/tauh))
}
FUNCTION ghk( v(mV), ci(mM), co(mM), z) (millicoul/cm3) {
LOCAL e, w
w = v * (.001) * z*FARADAY / (R*(celsius+273.16))
e = w / (exp(w)-1)
if (fabs(w)>1e-4)
{ e = w / (exp(w)-1) }
else
: denominator is small -> Taylor series
{ e = 1-w/2 }
ghk = - (.001) * z*FARADAY * (co-ci*exp(w)) * e
}