TITLE n-calcium channel
: n-type calcium channel
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
FARADAY = 96520 (coul)
R = 8.3134 (joule/degK)
KTOMV = .0853 (mV/degC)
}
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
PARAMETER {
dt (ms)
v (mV)
celsius = 6.3 (degC)
: gcanbar = 0.003 (mho/cm2)
gcanbar = 0 (mho/cm2)
ki=.001 (mM)
cai=5.e-5 (mM)
cao = 2 (mM)
tfa=1
tfi=1
eca = 140
}
NEURON {
SUFFIX can
USEION ca READ cai,cao WRITE ica
RANGE gcanbar
GLOBAL hinf,minf,taum,tauh
}
STATE {
m h
}
ASSIGNED {
ica (mA/cm2)
gcan (mho/cm2)
minf
hinf
taum
tauh
}
INITIAL {
rates(v)
m = minf
h = hinf
gcan = gcanbar*m*m*h*h2(cai)
}
BREAKPOINT {
SOLVE states
gcan = gcanbar*m*m*h*h2(cai)
ica = gcan*ghk(v,cai,cao)
}
UNITSOFF
FUNCTION h2(cai(mM)) {
h2 = ki/(ki+cai)
}
FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
LOCAL nu,f
f = KTF(celsius)/2
nu = v/f
ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu)
}
FUNCTION KTF(celsius (degC)) (mV) {
KTF = ((25./293.15)*(celsius + 273.15))
}
FUNCTION efun(z) {
if (fabs(z) < 1e-4) {
efun = 1 - z/2
}else{
efun = z/(exp(z) - 1)
}
}
FUNCTION alph(v(mV)) {
TABLE FROM -150 TO 150 WITH 200
alph = 1.6e-4*exp(-v/48.4)
}
FUNCTION beth(v(mV)) {
TABLE FROM -150 TO 150 WITH 200
beth = 1/(exp((-v+39.0)/10.)+1.)
: beth = 1/(exp((-v+24.01)/10.)+1.)
}
FUNCTION alpm(v(mV)) {
TABLE FROM -150 TO 150 WITH 200
alpm = 0.1967*(-1.0*v+19.88)/(exp((-1.0*v+19.88)/10.0)-1.0)
: alpm = -0.1967*(v-65.01)/(exp(-(v-65.01)/10.0)-1.0)
}
FUNCTION betm(v(mV)) {
TABLE FROM -150 TO 150 WITH 200
betm = 0.046*exp(-v/20.73)
}
UNITSON
LOCAL facm,fach
:if state_cagk is called from hoc, garbage or segmentation violation will
:result because range variables won't have correct pointer. This is because
: only BREAKPOINT sets up the correct pointers to range variables.
PROCEDURE states() { : exact when v held constant; integrates over dt step
rates(v)
m = m + facm*(minf - m)
h = h + fach*(hinf - h)
VERBATIM
return 0;
ENDVERBATIM
}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a
a = alpm(v)
taum = 1/(tfa*(a + betm(v)))
: taum = 0.8
minf = a/(a + betm(v))
facm = (1 - exp(-dt/taum))
a = alph(v)
tauh = 1/(tfi*(a + beth(v)))
: tauh = 2
hinf = a/(a + beth(v))
fach = (1 - exp(-dt/tauh))
}