TITLE fast HVA calcium current
COMMENT
fast high-voltage-activated calcium channel model
Nif/AgTx/CgTx resistant VSCC from rat sensorimotor pyramidal cells
Based on Lorenzon and Foehring (1995), J. Neurophysiol. 73(4):1430-1442
Written by Kevin A. Archie, karchie@lnc.usc.edu
(GHK code taken from Arthur Houweling's MyFirstNEURON models)
$Log: hvaccf.mod,v $
Revision 1.2 2000/09/27 22:45:41 karchie
Incorporated a few minor changes.
Revision 1.1 2000/09/21 17:50:33 karchie
Initial revision
ENDCOMMENT
VERBATIM
extern double nrn_ghk(double, double, double, double);
static const char rcsid[]="$Id: hvaccf.mod,v 1.2 2000/09/27 22:45:41 karchie Exp karchie $";
ENDVERBATIM
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX ca
USEION ca READ cai,cao WRITE ica
RANGE pcabar, ica, m_inf, h_inf
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(mM) = (milli/liter)
FARADAY = 96480 (coul)
R = 8.314 (volt-coul/degC)
}
PARAMETER {
v (mV)
celsius (degC)
dt (ms)
cai = 5.e-05(mM)
cao = 2.5 (mM)
pcabar (cm/s)
tauM = 5 (ms)
: vHalfM = -22 (mV)
: slopeM = 12 (mV)
vHalfM = 3 (mV)
slopeM = 8.3 (mV)
tauH = 0.8 (ms)
: vHalfH = -24 (mV) : given slopeH, 80% inactivation @ -10mV
: slopeH = 10 (mV) : close to slopeM (no data for this)
vHalfH = -39 (mV) : given slopeH, 80% inactivation @ -10mV
slopeH = 9.2 (mV) : close to slopeM (no data for this)
tBase = 23.5 (degC) : temperature for which tau is correct
: mpow = 2 : power of m in state equation
}
STATE {
m
h
}
ASSIGNED {
ica (mA/cm2)
m_inf
h_inf
}
INITIAL {
LOCAL tadj
: adjust rate constants based on temperature.
: original experiments performed at room temperature
: assumes that temperature remains constant through the sim
tadj = 3^((celsius-tBase)/10) : assume Q10 of 3
tauM = tauM / tadj
tauH = tauH / tadj
: set initial values of state variables.
rates(v)
m = m_inf
h = h_inf
}
BREAKPOINT {
SOLVE states
: ica = pcabar * pow(m,mpow) * h * nrn_ghk((v),(cai),(cao),2);
VERBATIM
ica = pcabar * m * m * h * nrn_ghk((v),(cai),(cao),2);
ENDVERBATIM
}
PROCEDURE states() {
rates(v)
m = m + (1-exp(-dt/tauM))*(m_inf-m)
h = h + (1-exp(-dt/tauH))*(h_inf-h)
}
PROCEDURE rates(v(mV)) {
m_inf = 1/(1+exp(-(v-vHalfM)/slopeM))
h_inf = 1/(1+exp((v-vHalfH)/slopeH))
}
FUNCTION ghk( v(mV), ci(mM), co(mM), z) (millicoul/cm3) {
LOCAL e, w
w = v * (.001) * z*FARADAY / (R*(celsius+273.16))
e = w / (exp(w)-1)
if (fabs(w)>1e-4)
{ e = w / (exp(w)-1) }
else
: denominator is small -> Taylor series
{ e = 1-w/2 }
ghk = - (.001) * z*FARADAY * (co-ci*exp(w)) * e
}