import os
import sys
import json
import pickle
import argparse as arg
import numpy as np
import matplotlib.pyplot as plt
from random import randint
import dlutils.utils as dlu
import dlutils.graphics as dlg
import neuron
from current_injection import inject_current_step
use_scoop = Trueif use_scoop:
try:
from scoop import futures
map_fun = futures.mapexcept:
map_fun = mapelse:
map_fun = mapif __name__ == '__main__':
parser = arg.ArgumentParser(description='Compute the f-I curve of a neuron model.')
parser.add_argument('I', type=str, action='store', help='current values in pA, either comma separated or interval and steps, as in 100:300:50')
parser.add_argument('-f','--swc-file', type=str, help='SWC file defining the cell morphology', required=True)
parser.add_argument('-p','--params-files', type=str, default='', help='JSON file(s) containing the parameters of the model (comma separated)')
parser.add_argument('-m','--mech-file', type=str, default='', help='JSON file containing the mechanisms to be inserted into the cell')
parser.add_argument('-c','--config-file', type=str, default='', help='JSON file(s) containing the configuration')
parser.add_argument('-n','--cell-name', default='', type=str, help='cell name, if the mechanisms are stored in new style format')
parser.add_argument('-P','--pickle-file', type=str, default='', help='Pickle file containing the parameters of a population of individuals')
parser.add_argument('-e','--evaluator-file', type=str, default='evaluator.pkl', help='Pickle file containing the evaluator')
parser.add_argument('-o','--output', type=str, default='fI_curve.pkl', help='Output file name (default: fI_curve.pkl)')
parser.add_argument('-R','--replace-axon', type=str, default=None, help='whether to replace the axon (accepted values: "yes" or "no")')
parser.add_argument('-A', '--add-axon-if-missing', type=str, default=None, \
help='whether add an axon if the cell does not have one (accepted values: "yes" or "no")')
parser.add_argument('--delay', default=1000., type=float, help='delay before stimulation onset (default: 1000 ms)')
parser.add_argument('--dur', default=500., type=float, help='stimulation duration (default: 500 ms)')
parser.add_argument('--tran', default=50., type=float, help='transient to be discard after stimulation onset (default: 50 ms)')
args = parser.parse_args(args=sys.argv[1:])
try:
I = np.array([float(args.I)])
except:
if','in args.I:
I = np.sort([float(x) for x in args.I.split(',')])
elif':'in args.I:
tmp = [float(x) for x in args.I.split(':')]
I = np.arange(tmp[0],tmp[1]+tmp[2]/2,tmp[2])
else:
print('Unknown current definition: %s.' % args.I)
sys.exit(1)
new_config_style = Falseif args.config_file != '':
new_config_style = Trueif new_config_style and args.cell_name == '':
print('You must provide the --cell-name option along with the --config-file option.')
sys.exit(1)
if'*'in args.params_files:
import glob
params_files = glob.glob(args.params_files)
else:
params_files = args.params_files.split(',')
if args.mech_file == '':
ifnot new_config_style:
print('You must provide the --mech-file option if no configuration file is specified.')
sys.exit(1)
cell_name = args.cell_name
mechanisms = dlu.extract_mechanisms(args.config_file, cell_name)
else:
cell_name = None
mechanisms = json.load(open(args.mech_file,'r'))
if args.pickle_file == '':
population = [json.load(open(params_file,'r')) for params_file in params_files]
working_dir = os.path.split(params_files[0])[0]
else:
iflen(params_files) > 1:
print('You cannot specify multiple parameter files and one pickle file.')
sys.exit(1)
population = dlu.individuals_from_pickle(args.pickle_file, args.config_file, cell_name, args.evaluator_file)
working_dir = os.path.split(args.pickle_file)[0]
if working_dir == '':
working_dir = '.'try:
sim_pars = pickle.load(open(working_dir + '/simulation_parameters.pkl','rb'))
if working_dir == '.':
print('Found pickle file with simulation parameters in current directory.')
else:
print('Found pickle file with simulation parameters in {}.'.format(working_dir))
except:
sim_pars = Noneif args.replace_axon isNoneand args.add_axon_if_missing isNone:
print('No pickle file with simulation parameters in {}.'.format(working_dir))
if args.replace_axon isNone:
if sim_pars isNone:
replace_axon = Falseelse:
replace_axon = sim_pars['replace_axon']
print('Setting replace_axon = {} as per original optimization.'.format(replace_axon))
else:
if args.replace_axon.lower() in ('y','yes'):
replace_axon = Trueelif args.replace_axon.lower() in ('n','no'):
replace_axon = Falseelse:
print('Unknown value for --replace-axon: "{}".'.format(args.replace_axon))
sys.exit(3)
if args.add_axon_if_missing isNone:
if sim_pars isNone:
add_axon_if_missing = Trueelse:
add_axon_if_missing = not sim_pars['no_add_axon']
print('Setting add_axon_if_missing = {} as per original optimization.'.format(add_axon_if_missing))
else:
if args.add_axon_if_missing.lower() in ('y','yes'):
add_axon_if_missing = Trueelif args.add_axon_if_missing.lower() in ('n','no'):
add_axon_if_missing = Falseelse:
print('Unknown value for --add-axon-if-missing: "{}".'.format(args.add_axon_if_missing))
sys.exit(4)
dur = args.dur
delay = args.delay
tran = args.tran
N = len(population)
f = np.zeros((N,len(I)))
no_spikes = np.zeros((N,len(I)))
inverse_first_isi = np.zeros((N,len(I)))
inverse_last_isi = np.zeros((N,len(I)))
spike_times = []
inj_loc = 'soma'
inj_dist = 0for i,individual inenumerate(population):
worker = lambda Idc: inject_current_step(Idc, delay, dur, args.swc_file, inj_loc, inj_dist, individual, mechanisms,
replace_axon=replace_axon, add_axon_if_missing=add_axon_if_missing,
cell_name=None, neuron=neuron, do_plot=False, verbose=False)
curve = list(map_fun(worker, I))
neuron.h('forall delete_section()')
spks = [np.array(point['spike_times']) for point in curve]
no_spikes[i,:] = [len(x)/dur*1e3for x in spks]
f[i,:] = [len(x[(x>delay+tran) & (x<delay+dur)])/(dur-tran)*1e3for x in spks]
inverse_first_isi[i,:] = [1e3/np.diff(t[:2]) iflen(t) > 1else0for t in spks]
inverse_last_isi[i,:] = [1e3/np.diff(t[-2:]) iflen(t) > 1else0for t in spks]
spike_times.append(spks)
data = {'delay': delay, 'dur': dur, 'tran': tran,
'I': I, 'spike_times': spike_times,
'f': f, 'no_spikes': no_spikes,
'inverse_first_isi': inverse_first_isi,
'inverse_last_isi': inverse_last_isi,
'population': population}
pickle.dump(data, open(args.output,'wb'))
fig,ax = plt.subplots(1,1)
dlg.plot_means_with_errorbars(I*1e-3,no_spikes,mode='sem',ax=ax,color='r',label='All spikes')
dlg.plot_means_with_errorbars(I*1e-3,f,mode='sem',ax=ax,color='k',label='With transient removed')
dlg.plot_means_with_errorbars(I*1e-3,inverse_first_isi,mode='sem',ax=ax,color='b',label='Inverse first ISI')
#dlg.plot_means_with_errorbars(I*1e-3,inverse_last_isi,mode='sem',ax=ax,color='m',label='Inverse last ISI')
plt.xlabel('Current (nA)')
plt.ylabel(r'$f$ (spikes/s)')
plt.legend(loc='best')
folder = os.path.dirname(args.output)
if folder == '':
folder = '.'
plt.savefig(folder + '/' + os.path.basename(args.output).split('.')[0] + '.pdf')
plt.show()