import numpy as np import scipy.stats as stats import scipy.stats.mstats as mstats import matplotlib.pylab as plt plt.ion() mn_ana=np.load("mn_spk_anatomical.npy") n=len(mn_ana) ana_freq=[] ana_ina=[] for num in xrange(n): tmp=[] count=0 for spk in mn_ana[num]: if len(spk)>2: tmp.append((spk[-1]-spk[-2])) else: count=count+1 # tmp.append(0) ana_freq.append(tmp) ana_ina.append(count) freq1=[] burst1=[] for x in ana_freq: freq1.append(np.mean(x)) burst1.append(stats.variation(x)) prob_ina=[] mn_prob=np.load("mn_spk_probabilistic.npy") n=len(mn_prob) prob_freq=[] for num in xrange(n): tmp=[] count=0 for spk in mn_prob[num]: if len(spk)>2: tmp.append((spk[-1]-spk[-2])) else: count=count+1 # tmp.append(0) prob_freq.append(tmp) prob_ina.append(count) freq2=[] burst2=[] for x in prob_freq: freq2.append(np.mean(x)) burst2.append(stats.variation(x)) n1=mstats.normaltest(freq1) n2=mstats.normaltest(freq2) out=stats.ttest_ind(freq1,freq2,equal_var=False) plt.subplot(3,1,1) frame = plt.gca() x=np.linspace(14,20,100) n,bins,patches=plt.hist([freq1,freq2],40,label=['anatomical','probabilistic']) plt.xlabel("frequency") plt.ylabel("# of simulations") #frame.axes.get_xaxis().set_visible(False) #plt.xlim([14,19.3]) #plt.ylim([0,np.max(n)+1]) plt.legend() plt.subplot(3,1,(2,3)) plt.plot(freq1,ana_ina,'.',markersize=10,label='anatomical') plt.plot(freq2,prob_ina,'.',markersize=10,label='probabilistic') #plt.plot(freq1,burst1,'.',markersize=10,label='anatomical') #plt.plot(freq2,burst2,'.',markersize=10,label='probabilistic') plt.xlabel("period") plt.ylabel("inactive mn") #plt.xlim([14,19.3]) #plt.legend()