import numpy as np
import scipy.stats as stats
import scipy.stats.mstats as mstats
import matplotlib.pylab as plt
plt.ion()
mn_ana=np.load("mn_spk_anatomical.npy")
n=len(mn_ana)
ana_freq=[]
ana_ina=[]
for num in xrange(n):
tmp=[]
count=0
for spk in mn_ana[num]:
if len(spk)>2:
tmp.append((spk[-1]-spk[-2]))
else:
count=count+1
# tmp.append(0)
ana_freq.append(tmp)
ana_ina.append(count)
freq1=[]
burst1=[]
for x in ana_freq:
freq1.append(np.mean(x))
burst1.append(stats.variation(x))
prob_ina=[]
mn_prob=np.load("mn_spk_probabilistic.npy")
n=len(mn_prob)
prob_freq=[]
for num in xrange(n):
tmp=[]
count=0
for spk in mn_prob[num]:
if len(spk)>2:
tmp.append((spk[-1]-spk[-2]))
else:
count=count+1
# tmp.append(0)
prob_freq.append(tmp)
prob_ina.append(count)
freq2=[]
burst2=[]
for x in prob_freq:
freq2.append(np.mean(x))
burst2.append(stats.variation(x))
n1=mstats.normaltest(freq1)
n2=mstats.normaltest(freq2)
out=stats.ttest_ind(freq1,freq2,equal_var=False)
plt.subplot(3,1,1)
frame = plt.gca()
x=np.linspace(14,20,100)
n,bins,patches=plt.hist([freq1,freq2],40,label=['anatomical','probabilistic'])
plt.xlabel("frequency")
plt.ylabel("# of simulations")
#frame.axes.get_xaxis().set_visible(False)
#plt.xlim([14,19.3])
#plt.ylim([0,np.max(n)+1])
plt.legend()
plt.subplot(3,1,(2,3))
plt.plot(freq1,ana_ina,'.',markersize=10,label='anatomical')
plt.plot(freq2,prob_ina,'.',markersize=10,label='probabilistic')
#plt.plot(freq1,burst1,'.',markersize=10,label='anatomical')
#plt.plot(freq2,burst2,'.',markersize=10,label='probabilistic')
plt.xlabel("period")
plt.ylabel("inactive mn")
#plt.xlim([14,19.3])
#plt.legend()