{ "cells": [ { "cell_type": "markdown", "source": [ "# Plotting codes for Fig S13\n", "\n", "This notebook generate Fig. S13 of \n", "\n", "Myung J, Schmal C, Hong S, Tsukizawa Y, Rose P, Zhang Y, Holtzman MJ, De Schutter E, Herzel H (2018) The Choroid Plexus is an Important Circadian Clock Component. *Nat Commun*, *in press*.\n", "\n", "It is written in [Julia language](https://julialang.org) and depends on MATLAB, PyPlot, and PyCall modules.\n", "\n", "*Written by Sungho Hong, Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Japan*\n", "\n", "*Correspondence: Sungho Hong (shhong@oist.jp)*\n", "\n", "*February 9, 2018*\n", "\n" ], "metadata": {} }, { "cell_type": "code", "source": [ "using MATLAB\n", "using PyPlot\n", "using PyCall\n", "\n", "rc(\"pdf\", fonttype=42)\n", "rc(\"mathtext\", fontset=\"stix\")" ], "outputs": [], "execution_count": 1, "metadata": {} }, { "cell_type": "code", "source": [ "\"\"\"\n", " sync_index(z) \n", "\n", "Computes the synchronization index.\n", "\"\"\"\n", "function sync_index(z)\n", " nz = z./abs.(z);\n", " abs.(mean(nz,2))\n", "end\n", "\n\n", "@pyimport scipy.spatial.distance as dist\n", "\"\"\"\n", " make_wij(xydim, radius)\n", "\n", "Computes an adjacency matrix of a network with a 2d \n", "box geometry with `xydim`, based on the distance, `radius`.\n", "\"\"\"\n", "function make_wij(xydim, radius)\n", " ncell = prod(xydim)\n", " position = zeros(ncell, 2);\n", " count = 1;\n", " for y=0:(xydim[2]-1)\n", " for x=0:(xydim[1]-1)\n", " position[count, 1] = x\n", " position[count, 2] = y\n", " count = count+1\n", " end\n", " end\n", "\n", " dw = dist.pdist(position)\n", " dw = Float64.(dw .<= radius)\n", " sparse(dist.squareform(dw))\n", " \n", "end\n", "\n\n", "\"\"\"\n", " fMoranICirc(z, wij)\n", "\n", "Computes Moran's *I* from the data `z` and adjacency matrix,\n", "`wij`.\n", "\"\"\"\n", "function fMoranICirc(zin, wij)\n", " z = zin./abs.(zin)\n", " wijc = Complex.(wij)\n", " zm = mean(z, 2)\n", " zd = broadcast(-, z, zm)\n", " wdd = zeros(size(zd,1), 1)\n", " for i=1:length(wdd)\n", " dth = zd[i,:]\n", " wdd[i] = real(dth'*wijc*dth)\n", " end\n", "\n", " wdd./(1-abs.(zm).^2)/sum(sum(wij))\n", "end\n" ], "outputs": [ { "output_type": "execute_result", "execution_count": 2, "data": { "text/plain": [ "fMoranICirc" ] }, "metadata": {} } ], "execution_count": 2, "metadata": {} }, { "cell_type": "code", "source": [ "# Assume that the simulated data is saved as in \"Simulation_Fig_S13.m\".\n", "mf = MatFile(\"fig_s13_data.mat\")\n", "res = get_variable(mf, \"res\")\n", "qss = get_variable(mf, \"qss\")\n", "\n", "z0 = res[1];\n", "z1 = res[2];\n", "q0 = sync_index(z0);\n", "q1 = sync_index(z1);\n", "\n", "nx = 48\n", "ny = 16\n", "wij = make_wij([nx,ny], 1)\n", "mi0 = fMoranICirc(z0, wij)\n", "mi1 = fMoranICirc(z1, wij)\n", "\n", "q = qss[1];\n", "\n", "wc = make_wij([48,16], 4)\n", "zc = 0.0005/0.025*mean(sum(wc,2))+1;" ], "outputs": [], "execution_count": 3, "metadata": {} }, { "cell_type": "markdown", "source": [ "## Plotting Fig S13a" ], "metadata": {} }, { "cell_type": "code", "source": [ "tt = 1:size(z0,1)\n", "\n", "i1 = 61*24\n", "i2 = 70*24\n", "fieqv = i -> maximum(tt[q0[:] .< q1[i]])+1;\n", "ieqv1 = fieqv(i1);\n", "ieqv2 = fieqv(i2);\n", "\n", "println(\"i = $i1, ieqv = $ieqv1\")\n", "@printf(\"q0 = %.3f, q1 = %.3f\\n\", q0[ieqv1], q1[i1])\n", "println(\"i = $i2, ieqv = $ieqv2\")\n", "@printf(\"q0 = %.3f, q1 = %.3f\\n\", q0[ieqv2], q1[i2])\n", "\n", "fig, ax = subplots(nrows=3, ncols=1, sharex=true, figsize=[4, 4])\n", "ax[1][:plot](q, mean(abs.(z0),2), \"k\", label=\"w/o twist\")\n", "ax[1][:plot](q, mean(abs.(z1),2), \"r\", label=\"with twist\")\n", "ax[1][:legend]([\"w/o twist\", \"with twist\"], frameon=false, loc=4)\n", "ax[1][:plot]([0, 4], [zc, zc], \"--c\")\n", "ax[2][:plot](q, q0,\"k\", q, q1, \"r\")\n", "ax[2][:plot](q[ieqv1], q0[ieqv1], \"ok\", q[i1], q1[i1], \"or\" )\n", "ax[3][:plot](q, mi0,\"k\", q, mi1, \"r\")\n", "ax[3][:plot](q[ieqv1], mi0[ieqv1], \"ok\", q[i1], mi1[i1], \"or\" )\n", "\n", "for a in ax\n", " a[:set_xlim]([0, 4])\n", "end\n", "ax[1][:set_ylabel](\"Mean amplitude\")\n", "ax[2][:set_ylabel](\"Sync index Z\")\n", "ax[3][:set_ylabel](\"Moran's I Icirc\")\n", "ax[3][:set_xlabel](\"Scale s\")\n", "tight_layout()\n", "savefig(\"stats_simulation40_TwistedVsNontwisted.pdf\", dpi=1200)" ], "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "i = 1464, ieqv = 1075\n", "q0 = 0" ] }, { "output_type": "display_data", "data": { "text/plain": [ "PyPlot.Figure(PyObject <matplotlib.figure.Figure object at 0x130ba15c0>)" ], "image/png": [ "iVBORw0KGgoAAAANSUhEUgAAAYwAAAGMCAYAAADJOZVKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3XlYVGX7wPHvAMO+qCgmSuJuKoJ7YrhklntpVpZrauWblWVvlr/SzCyrNyszyy33PXfNJU1R09w1c09FUhFRRBi2AWae3x9HJknAGRlgxPtzXeeaOWeec+aekrnnPKtOKaUQQggh7sCpuAMQQghxb5CEIYQQwiqSMIQQQlhFEoYQQgirSMIQQghhFUkYQgghrCIJQwghhFUkYQghhLCKJAwhhBBWkYQhhBDCKpIwhBBCWEUShhBCCKuU+IShlCIpKQmZY1EIIQqmxCcMg8GAn58fBoOhuEMRQoh7WolPGEIIIezDpbgDKCopJhPOJtNtx50Bd2fnHOXy4gR43GXZVJOJvCrFdIDnXZZNM5kw5xkFeN1l2XSTibw/nW1lPZ2c0Ol0ABjNZrLyqR60payHkxNON8tmmM1k2qmsu5MTzndRNtNsJiOfsm46HS5OTjaXzTKbMeZT1lWnQ38XZU1KkW7O+1+EXqfD9S7KmpUizU5lXXQ63G6WVUqRaqeytvzdl4TviFvfpyDum4QRuGsXeHnddrxjmTL8XL++ZT9g5848/6G18vMjskEDy37w7t1cy8zMtWxjHx/2NWpk2a+zdy/RRmOuZet4enKsaVPLfpMDBziemppr2cpubpxv3tyy3/LwYfbnUd1WVq/naosWlv0OR46wLTEx17KeTk6ktGxp2X/62DHWXb+ea1kA1bq15XmfkydZevVqnmWTIyIsCeaVU6eYfeVKnmXjwsMp5+oKwLAzZ/g+JibPslHNmhHs4QHA+1FRfHnhQp5ljzZpQt2b//8/jY7mo+joPMvubdiQJr6+AEy4eJHh587lWXZraCitS5cGYOrly7z21195ll0bEkInf38A5l+5wounTuVZdkmdOjwTEADAimvXePb48TzLzqxVi/4VKgCwMSGBzn/+mWfZ72rUYEjFigDsuHGDNn/8kWfZL6pW5Z0HHwTgoMFA04MH8yz7YeXKjK5SBYATqanU27cvz7L/DQrif9WqAfB3ejpV9uzJs+yrgYFMqlkTgGuZmQTs2pVn2X7lyzProYcASDWb8d6xI8+yPcqV46e6dS37+ZUtCd8Rt75PQUiVlBBCCKvoSvoSrUlJSfj5+RFz/Tq+N3813qok3G5KlZRUSUmV1P1dJWUymcjMzCQjI4OsrCz0JhMZGRlkZmZiyMgg7OadV0HdNwkjMTEx14QhhBDWUkqRkZFBWloa6enppKWl5Xienp5ORkYGRqNRe0xLw5SaSlZKCua0NLJSUzGnpmJOS0OlpaHS01Hp6WA0otLT0WVkgNGILiMDp4wMdJmZOGdm4pSZiXNWlraZTOizsnAxm3ExmXBRClfId3vQTl/z900bhhCi5DKbzaSlpZGcnExKSgopKSk5nmfvpxoMZNy4QVZSEuaUFG1LToa0NFRqKrq0NHTp6ejS03E2GnHOyMA5IwN9Zib6rCz0WVl4gGXzvOV5wM1Hd8Dt5uZaTP89CoskDCFEsTAajSQmJpKUlGR5vPV58vXrZFy9Sub162QmJKAMBpTBgC41FafUVFzS07XNaMQtKwtvsGxeNx/L/2vfs9g+rSbTyYksFxeynJ0xubhYNrNej9nVFbNej3J1BVdXlJsbOjc3lLs7Ond3dG5uOHl4oPPwwNnDAycPD5w9PXFyd8fJwwOXm8ezN25eB73ebvEXecIwGAyEh4ezZs0agoODLcf379/PoEGDLPvx8fEAXLhwgVOnTtGkSROqVq0KQPny5dm4cWORxi2EyEkpRWpqKtevX79tu3H1KmkxMWTGxpIZH4/5+nV0SUm4pKTgnJKCW3o63mYzvoDfzc0XqHjLvnshx5/h4kKWXk+WXo/JzQ3zzU25u6M8PMDDA52nJzovL5y9vHDy9sbZ2xsXX19t8/ZG5+kJnp5ws7xlc3PLubm7g16PXqfDfl/fRa9IE8aePXt45ZVXOJVLd8LGjRtz+PBhANLT02nWrBlffPEFAHv37uXFF19kwoQJRRmuEPcVpRQGg4G4uDiuXLlCXFwccVeukHDhAunR0WReuoT56lV0N26gT0rCIzUVX5OJMoA/UAYIvvncnq2FGXo9me7umNzcMHl6Yvb01LrI+/jg5O2Nk58fLn5+6EuXxqVUKZx8fMDbW9u8vP55nr3d/IJ31elKXJVRYbMpYZjNZqZMmcLx48cZN24cM2fOZMiQITg5Wdc7d/LkyUycOJE+ffrkW+7LL7+kUaNGPPHEEwDs27ePQ4cOERYWhr+/P99++y11b+lDLYTIX1JSEhcvXuTSpUtcunSJ2PPnSTl9mqzz59FduYI+IQGPpCT8TSbKo1XlhN18vNtqHDNgdHcn08sLk7c3yscH/PxwKlUKZ39/9GXL4urvj1Pp0uDnB76+2uOtz318cHVxkS92B2FTwnjrrbdIT09nx44dKKVYv349J0+eZNKkSVadP3PmzDuWMRgMTJw4kYO3DBLy9PSkb9++DBw4kF9++YWnnnqK48ePo8+lbs5oNGK8ZfBLUlKSVbEJca8ym83ExMQQFRVFVFQU58+e5caxY6hz59Bfvozn9euUy8ggCKgEhKI10NrCqNeT7utLVqlSqDJlcCpbFn1AAG4VKqB/4AF0/v5QpgxkP5Ypg1OpUng4O+Nh/48siolNCWP79u0cOnSIBg0a4OPjw5o1awgJCbFrQPPnz6dDhw5UvDkaFeCzzz6zPG/fvj1eXl6cOHGC+reMvsw2btw4PvroI7vGJERxy8rKIioqipMnT3Lq1CkunDxJ1vHj6KOi8Ll6lQdNJqoALYDnwap68gwXF9LKlCGrbFl0DzyAS6VKuFeujGulSlC+PAQEaI/ly+Pm5YVb4X5EcQ+wKWE4OzujlLIMrEpLS7O6OspaK1as4O23385x7H//+x+DBw/Gx8cH0AapuLjkHvqIESMYNmyYZT8pKYmgoCC7xihEYUlNTeXYsWMcP36cUydPEn/wIOYTJ/C+dInqZjO1gOeAO/2LNjk7k1K2LFkVK+IcHIxH9eq4Vq0KlSpBUBBUqoRr6dK43vxbFsIaNiWMXr168eyzzxIfH8/XX3/NnDlz6NWrl92CUUqxb98+HnnkkRzHt27dil6v580332TLli2YTCZq166d6zXc3Nxwc5PfQsKxKaW4ePEif/zxh2U7f+gQvmfP0kQpwoG30RqQ85Lu7U16cDAutWrhUbcuztWqQZUqEByMc2AgvnaacE6IbDaP9P7111/ZsGEDJpOJRx99lM6dO9v8psHBwURGRhIcHEzHjh0ZM2YMjRs3Ji4ujvr16xMbG5ujfHR0NAMGDODKlSt4eHjw448/5lodlRsZ6S0cwdWrV9mzZ49li967l6qJiTQEGgINgKq5nGdydiatYkWcatfGIywMXe3aUKuWtvnnl06EsD+rEsb27dvzfb3lLbOcOhpJGKKoGY1GDh8+zO7duy0J4uq5czwNtAfCybtKKatyZVyaNoXwcG0LC9MGXwnhAKxKGG3atAG0wXRnz54lPDwcZ2dndu3aRUhICDt37iz0QO+WJAxR2AwGA7t27WLHjh1s376dvXv3YjQacQYeB/oAT0GO3kJKp0PVrIlTo0bQsKG2hYXBzanShXBEVrVhbN26FYBOnTqxYsUKqt2cyz46OppXXnml8KITwkH9/fffLFq0iKVLl3LgwAHMN2dG9QeeBp5yc+Nxsxm/W9dCeOgh6NkTWrZE17gxOm/vYoldiLtlU6N3VFSUJVkAPPjgg0TnsxCNECXJtWvXWLp0KQsWLGDHLQvu+APvlC5NdxcXql+7hk4pyB4LVK4cPP889OkDjRqB9EoS9zCbEkbjxo3p3bs3PXv2RCnF3LlziYiIKKzYhCh2KSkprF69mgULFrBhwwaysrIA0Ol09GrShBHu7jy0Zw+6hIR/TgoJgU6doGNHaN4c8ugCLsS9xqZeUhkZGUycOJHIyEh0Oh2PPfYYr776ap5jIhyBtGEIWyml2Lt3L9OmTWPRokWkpKRYXmvQoAFvtW5Nj2PH8Ni0CbL/fBo1gkGDtEQh435ECWVTwvj7779zPf7gzXV/HZEkDGEtg8HAnDlzmDp1KkeOHLEcr1q1Kr169aJ/o0ZUXbAAliz556QuXeDtt6FlS6luEiWeTQmjSpUqllHeGRkZxMbG0qBBA/bls+B7cZOEIe7k+PHj/PDDD8yePRuDwQBoA0CfeeYZXn75ZR5xcUH32WewevU/J73wAowcCXkMIBWiJLK50ftWe/bs4fvvv7drQEIUhbS0NBYuXMj06dP5/fffLcdr1arFq6++Su/evSnj4gLDh8OUKdqLOh306AHvvw+hocUUuRDFp8BreterV4+jR4/aKx67kzsMcausrCxmzZrF6NGjuXTpEqDNkdalSxeGDBlC27Zt0YF2N/H663DhgnZi//4wYgTUrFlcoQtR7Gy6wxgzZozluVKKI0eOUL58ebsHJYS9mUwmVqxYwciRIzl58iSgtb0NGTKEvn378sADD2gFDx6EN96A7MGoVarAjBnQunXxBC6EA7EpYdx6M6LT6Xj00Ud54YUX7B6UEPaSlpbG3LlzGT9+PKdPnwbA39+f999/n//85z+4u99cCNRohI8/hs8+A5NJW1LzzTfhgw+0VduEELYljKCgIAYMGJDj2IQJExg6dKhdgxKioNLS0vj666/5+uuvuXbtGgClSpXi9ddf5+2338bPz++fwvv3a1VOx45p+88+C199BbesySKEsDJhfPPNNyQlJTF58mQuXrxoOZ6VlcX8+fMlYQiHsnLlSt566y3Onz8PQOXKlXnjjTd46aWXLGuqAJCZCaNHw+efa3cVAQHw/ffw9NPFErcQjs6qhFGjRg3279+PUipHtZSbmxtz584ttOCEsEV8fDyvvfYaixYtAqBixYp89tln9OzZ8/bBpZcuaT2edu/W9l94ASZMgLJlizhqIe4dNvWSOnbsGHXr1i3MeOxOekndH37//XeefvppLl++jLOzM8OHD+f999/HK7f2hwsXoE0bOHsW/Py0Ru3u3Ys+aCHuMVbdYXTu3Jm1a9fSuXNny8C9W507d87ugQlhrXnz5jFw4EAyMjKoXbs2c+bMoUmTJrkXNhigfXstWVStCps2aY9CiDuyKmFMmzYNgMjIyMKMRQibzZs3j759+6KUolu3bsyZMwfvvKYNN5u1WWOPH4fAQNi6FRx4WhshHI1VCWPTpk35vt63b1+7BCOELVauXEm/fv1QSvGf//yH7777Dicnp7xPGD0aVq0CNzdYsUKShRA2smkBpdzodDqbEobBYCA8PJw1a9YQHByc47UpU6bw0UcfERAQAGgLNn3yySfcuHGDXr16ce7cOcqVK8fixYupUKGC1e8pSp6DBw/Sq1cvzGYzL7744p2TxdKl2jgLgKlToWnToglUiJJE3YX4+Hh148YNm8/bvXu3Cg0NVXq9XkVFRd32+oABA9Ty5ctvOz5kyBA1duxYpZRSc+bMUd27d7f6PRMTExWgEhMTbY5XOKaYmBhVsWJFBajHH39cZWZm5n/CH38o5empFCj11ltFE6QQJZBNCePgwYOqXr16yt/fX5UuXVo1bdpUnT592urz+/fvr7Zv364qV66ca8IICQlR7du3VyEhIapPnz4qISFBKaVUcHCwio6OVkoplZmZqby8vJTRaLTqPSVhlCypqamqSZMmClC1a9e2/BvJU1ycUsHBWrJo106pOyUXIUSe8rmHv93AgQMZN24c165d4/r167z33nv079/f6vNnzpyZ5wp9ZrOZoKAgPvzwQ/744w8qVarEG2+8AUBMTAyBgYEAuLi4UKpUKcvo3X8zGo0kJSXl2ETJoJSif//+7Nu3jzJlyrB27VpKlSqV9wkpKdC5M5w/D9WqwaJFsvqdEAVhS3Zp2LDhbccaNGhgc5bK6w7jVgkJCap06dJKKaX0en2OaofAwEB1+fLlXM/78MMPFXDbJncY977Ro0crQOn1ehUZGZl/4cxMpTp10u4s/P2VOnGiaIIUogSz6Q7jscceY+zYsVy5coX4+HgmTZrEQw89xN9//53nanzWunr1KhMnTrTsm0wmy+jcihUrEhsbC2jTkRgMBvz9/XO9zogRI0hMTLRsF7Knpxb3tOnTpzN69GgAfvjhB1q1apX/Cf/9L/z8M3h4wNq1stCREHZg0/35kptLU/744485jrdq1QqdTlegAXw+Pj6MGTOG8PBwGjVqxLfffku3bt0A6NixI7NmzeKDDz5g4cKFREREoNfrc72Om5sbbm5udx2HcDxLly7llVdeAeC9995j4MCB+Z8wZYo2zQfAvHnw8MOFHKEQ94niuK25tUqqQ4cOat++fUoppX799VcVFhamatWqpZ588klLT6z4+HjVpUsXVadOHRUeHn7H6qxbSaP3ve2XX35Rer1eAeqll15SZrM5/xM2bVLK2Vmrivrkk6IJUoj7hE1zSZ04cYLp06eTkJCQ4/iMGTPsnMbsR+aSuncdOHCA1q1bk5yczDPPPMPChQtxdnbO+4SdO6FTJ0hMhN69Yc4cbVlVIYRd2FQl1a1bN3r27En9+vULKx4hAPjrr7/o0KEDycnJtG3blrlz5+afLDZs0CYQTEuDiAiYNk2ShRB2ZlPCKFOmjKXhUYjCEhsbyxNPPMHVq1dp0KABy5cvz79davFi7Y4iKws6dNBGdWevpCeEsBubqqSmTZvG+fPnadu2bY71BVq2bFkowdmDVEndW5KSkmjVqhWHDx+mWrVq7Ny5M/9141es0BY8Ugp69oTZs8HVtegCFuI+YtMdxtatW9m7dy+7du2yHNPpdGzZssXugYn7j9Fo5KmnnuLw4cMEBASwcePG/JPFgQPQq5eWLAYO1HpH5VdtJYQoEJsSxqFDh/jrr79yXRNDiILIzMzkueeeY+vWrXh7e7N+/XqqVauW9wmXLkHXrlqbRfv2MHmyJAshCplNA/caNmzIH3/8UVixiPuUyWSiX79+rFq1Cjc3N1atWkXDhg3zPiElBbp0gZgYqFtXpvwQoojY9Fd29OhRGjZsSGBgIK6uriilCjxgT9zflFK8+uqrLFy4EBcXF5YtW8ajjz6a9wlms9bAfegQlCsHa9Zoy6wKIQqdTQlj9erVhRWHuE9NmDCBqVOn4uTkxIIFC+jUqVP+J4wYAStXaosgrVwJVaoUTaBCCNsSRvny5Vm/fj3JyckopTCZTJw7d46PsxemEcIGv/zyC2+//TYA48eP55lnnsn/hBUr4IsvtOczZkB4eCFHKIS4lU0J44UXXiApKYlTp04RERFBZGQkjzzySGHFJkqwv/76i+eeew6z2Uz//v0ZOnRo/idcuKD1hAJ45x144YXCD1IIkYNNjd5//vknmzdv5qmnnmL48OHs3LmTqKiowopNlFCJiYl07dqVGzdu0Lx5cyZPnpx/zzuTSWu3SEiAxo1h7NiiC1YIYWFTwshea/uhhx7izz//pEqVKqSkpBRKYKJkMplM9OrVi5MnT1KpUqU7j+IG+Owz2L4dvL1h4UIZmCdEMbGpSqpu3boMGTKEwYMH07t3by5evIiTk005R9zHlFIMHTqUn3/+GXd3d1auXMkDDzyQ/0kLFsDIkdrz776D6tULP1AhRK5s+rb/4Ycf6NmzJyEhIXz00UfExsayaNGiwopNlCAmk4l33nmHSZMmodPpmDNnDo0aNcr7hPR0eP31f0ZyDx4MffsWXcBCiNvYNJfUvUjmkipeSinWrFnD+++/z9GjRwH49ttvef311/M+6cQJbV6oI0e0/bffhs8/l5HcQhQzGR4rCs3evXt56623LHOPlSpViu+//57nn38+75PWrYNnn9VGc5crp61p0b59EUUshMiPNEAIu1NK8fHHH9OsWTN27dqFh4cH7733HufOncs/Wcyerc0PlZICjz4Kf/whyUIIB2LzHUZSUhKJiYncWpP14IMP2jUocW8bNWoUY292fe3duzeff/45gYGB+Z80ezb0768979sXpk+HPNZtF0IUD5vuMMaNG0dgYCAtW7akVatWtGrVitatW9v0hgaDgZCQEM6fP3/ba5s2baJRo0aEhYXRtm1boqOjATh16hS+vr6EhYURFhbGE088YdN7iqKzcuVKS7KYOHEic+fOvXOyWL4cBgzQnr/+OsyaJclCCEdkywLgVapUUZcvX77rBcR3796tQkNDlV6vV1FRUTleMxqNqnz58urUqVNKKaWmTp2qunbtqpRSas6cOeqNN964q/dMTExUgEpMTLzruIV1bty4oSpUqKAANWzYMOtOOnFCKU9PpUCpgQOVMpsLN0ghCqhFixYqKyvLqrKjRo1S27dvt6rswIED1b59+/J8ferUqWrBggVWXauw2HSHERQUdOd+8/mYPHkyEydOzPUXp9FoZMKECdSsWROABg0a8PfffwOwb98+Dh48aLnzOHbs2F3HIArPBx98wOXLl6lRowaffPLJnU8wGuG55yA1VWuzmDJF1uEWDi06OpqgoKD815e/xbZt2zCZTFaVnT59Oo0bN87z9Z07d2I0Gq26VqGxJbu8+eabqlu3bmrKlClq9uzZls1WlStXvu0O41ZZWVmqU6dOatSoUUoppd599101depUZTKZ1Pr161X16tVVRkZGruemp6erxMREy3bhwgW5wygCZ86cUS4uLgpQmzdvtu6kESO0O4ty5ZSKiSncAIVDM5vNKjk5uVA38x3uXuvVq6eOHDmilFLqxRdfVL1791ZKKXX8+HHVtGlTpZRSkyZNsnznzZo1S9WtW1fVq1dP9evXTxkMhhzXmzFjhvLy8lLVqlVTX375perevbtSSqno6GgFqDNnziillHr22WfVunXrVKtWrdTWrVvV1atX1WOPPabCwsJUvXr11MqVK9WGDRtU6dKlVVBQkPr555/t9x/eRjYljP79+9+2vfjiiza/aX4JIzU1VXXv3l116NAhz6QQGhqq/vjjj1xf+/DDDxVw2yYJo3D17t1bAeqJJ56w7oStW5VyctISxvLlhRqbcHzJycm5/t3ac0tOTs43hvfee099/fXXSimlQkJCVLVq1ZRSSn311Vfq448/Vkop1aVLF3XlyhX1559/qqpVq6qrV68qpZQaMmSI+u9//3vbNbOTQFJSkipfvrwymUxqxowZKiAgQE2bNk2ZTCYVFBSk0tLSLGUnTJig3nrrLaWUUgcPHlRvv/22Ukqpfv36qZkzZ9rlv/fdsqmX1MyZM287lpqaassl8pWQkECnTp2oWrUqixYtQn+z4fN///sfgwcPxsfHB9BGDbvkscLaiBEjGDZsmGU/KSmJoKAgu8Uobnf+/HkWLFgAkH9V1LVrsGULbN4M8+b9sxhSt25FFKkQeevUqROff/45nTp1onLlyly/fp0zZ86wYcMGvvjiC4xGIwaDgYCAAH766Se6dOlC2bJlAXjppZd48cUX87y2j48P9erV49ChQ2zevJm33nqLyMhI6tatS6NGjXB3d7eUbdOmDe3atSM6Opr27dszatSoQv/s1rIpYaxatYpRo0blWA8jPT2dK1eu2CWY7t2706xZM7766qscs5du3boVvV7Pm2++yZYtWzCZTNSuXTvXa7i5ud15MjthV9999x1ms5l27drlPt3HtWvafFBTp2pJIlv79jBtWtEFKhyWp6cnycnJhf4e+WnevDlHjx5l48aNtGnThvj4eNatW0dUVBShoaFs2LCBVq1aAdqP1lu/o5RSZGZm5nv9Tp06sXnzZg4dOsTkyZMJDQ2lWrVqdO7cOUe5kJAQTp8+zfr161m7di3jx4/n+PHjd/mp7cumhPHOO+8wffp0Pv/8cz744ANWr15NUlJSgQLo2LEjY8aMISEhgcjISOLj42nQoAGgLdi0ceNGfvjhBwYMGMD06dPx8PBg0aJFMumhg0hOTmb69OkAt69pkZUFkydryeLGDe1Y/fpaA3e7dlrCkP+PAtDpdHh5eRVrDM7OzoSHhzNhwgSWLFnC9evX6du3L08++SQA69ato3fv3gC0bt2ar7/+mvfff5+yZcsybdo0SzK5lYuLC1lZWQB07tyZjh07UqdOHXx8fKhYsSIzZsxg3759Oc757LPPSE5OZuzYsXTq1IkHH3yQpKSkHNcqNrbUXzVu3FgppdSYMWPU+vXrlVJKPfTQQ/auJrMr6VZbuL777jsFqBo1aiiTyfTPC0eOKBUaqrVRgPZ827biC1QIK8yfP1+VLl1amUwmlZaWptzc3CyNzM2bN8/xb3zatGmqXr16qlatWqpnz57qxo0bt13vq6++UlWrVlXbbv7br1GjhqWdZNSoUapJkyaWsrc2erdr106FhISoBg0aqG+//VYppdSSJUtUcHCwWrRoUaF9/juxafLBiIgIpk+fzpEjRzh48CCjR4+mWrVqXLx4sfAyWgHJ5IOFRylFnTp1OHny5D8TCioF334Lw4dDRgaUKaMtePTyyzJ5oBD3OJvqA8aOHcvIkSPp0qULGzdu5IEHHqBnz56FFZtwcJs3b+bkyZN4e3vTr1cv+PNPeOopePNNLVl07gzHj8N//iPJQogS4K6mN8/KysLFxYWEhARKly5dGHHZjdxhFJ5hjzxC8M6d9ChThsDkZC1JgLYi3vjxMGSIDMQTogSx6Q7j9OnTNG3alKpVqxITE8Njjz3GqVOnCis24aiuXSO+VSu+2rmTN4DA69e1ZOHuDh07wt698NprkiyEKGFsShivvvoq33zzDf7+/gQGBjJs2DAGZE8aJ+4Phw+jGjfGf/t2soDd1arBihVw7pw2LfnPP0NoaHFHKYQoBDYljBs3bhAeHm7Z79WrFykpKXYPSjioRYsgPBxddDRngEfc3Qnatk1rt6hSRbrIClHC2fQX7u3tzYULFywDVrZt25ZjhKIooZTSejo9/zykpbEBaAK8Pn06FStWLO7ohBBFxKY76HEuAAAgAElEQVSE8fXXX/Pkk09y+vRpQkND6dOnDxMmTCis2ISjGDlS24Bv3d3pBDz3yiv06tWreOMSogjt37+fQYMGATBt2jQWLlwIQP/+/Zk1a1a+5yYmJtLNyilwYmJi6NixY75l2rRpY9W17M2mkd4NGjRg7969nDp1yjI9h6ura2HFJhzBxIlwc36obytXZmh0NA0bNuSbb74p5sCEKFqNGze2zGqwc+dOmxaPS0hI4NChQ1aVDQwMZN26dfmWiYyMtPq97cmqhDFmzJh8X3ekybGEHa1dq42pANaGhzN01y78/Pz46aefpCpS2JdS2roohcnTM9+eeyEhISxYsICQkBAGDBhAZmYmc+fO5cSJE/Tv35/PP/+c0aNHM2LECFavXs2WLVsICAgAtGlDvv/+e65cucJLL73EBx98kOPaQ4YMISYmhq5du6KU4uWXX6ZLly6MGTOGTZs2sWPHDgwGA3Xr1mXbtm20adOG8+fPs3r1akaPHk1GRgaBgYHMmzePjz76CNAS2P79+wvvv1curKqS+vjjj/nhhx8skwwqbVp0yyZKoKNHtTYLs5moRx+ly65dAMyePZuqVasWc3CixElNBW/vwt3ukJA6d+7Mr7/+CmjVT7///jsAGzZsoEuXLpZyTzzxBF27dmXMmDGWqqPU1FR2797Nvn37+PTTTzEYDDmuPWnSJAIDA1m9enWO99myZQtRUVGkpqayefNmHn/88RyTGo4ePZpZs2Zx9OhRHnvsMQ4dOsSkSZMsMRY1q+4wLl26xOLFi1m6dCnnzp2jZ8+edO/e3TLduChh4uOha1dITialaVMa7d0LaJNPZk/EJkRJc6fpzRMSEvI898knn8TJyYmAgADKlSvH9evX8/x+7NSpE5MmTSIlJQWDwUCrVq3YtWvXbYkJoFu3bnTu3Jknn3ySrl270q5dO7t+ZltZdYcREBDA66+/zrZt25g6dSpxcXG0b9+eZ555hhUrVhR2jKIopaZq61NERWGqXJmI2FgSkpNp2bKldcuuCnE3PD0hOblwNxunN2/dunWO6c3zk712D2gz7+ZX81KpUiWcnJxYunQpLVq0oHXr1kRGRhIZGcljjz2Wo+zIkSPZtGkTVapUYfjw4cX+N2hTozdo63q/9dZb1KlTh3HjxjFw4ECrW/+Fg0tMhKefhh07UD4+9PL25tCxY1StWpVly5bl+KMQwq50OnDw6c1vZetU4/8u36lTJ8aOHcsXX3xB/fr1admyJaGhoXh5eXH16lVLuXr16rF06VKGDRtG2bJlWbVqlSXW7CmaipLV3WpNJhPr16+nf//+VKlShQULFjB8+HBiY2MLMz5hT2lpcPkyJCXlXMgoPR2WLYPGjeHXXzF7ejKoYkUWHzuGv78/a9eutawsJkRJ1qlTJ+Lj4wkNDaVFixbEx8fftsARaO0Yn3zyCYsXL7bquhUqVCA4OJiIiAjL+5w9e5ZWrVpRrVo19Hp9ru/z2Wef8cwzz9CoUSOmTZtmafDu3r079evXL/KB01ZNPjho0CA2bNhA8+bNee655+jcufM900vmvp98MDlZmwhw4UK4dd4vnQ78/LT5n65eBZMJgPRy5Xhap2NdXBz+/v5s2bKF+vXrF1PwQghHYlXCcHJyomzZspYVsXT/6pp27ty5wonODkpiwjAajRw+fJiYmBhAqxMNCQm5PYmvWwevvgrR0f8c0+m0Loz/YvDzY4W3N29cukQiUKtWLVauXJnnUrhCiPuPVRVgUVFRhR2HuAOlFNu2beP7779n9erVGI3GHK+7ubnRvHlz2rVrR8dGjQidORNd9u1y5cowdizmxx/nRFwc+3/7jaM7d3J63z5i/vqLGLOZmMRESEzE2dmZ1199lY8//hg/P79i+KRCCEd1V+th3Evu9TuMxMRE5s2bx/fff59jIfhy5cpRvXp1zGYzUVFRxMXF4QMMAkYBpQCzTsdvjRuzIiyMI2fPsm/fvtv6h4M2srRZs2ZERETQs2dPKlSoUFQfTwhxDynyhGEwGAgPD2fNmjUEBwfneO3w4cMMGjSIpKQkIiIimDx5Mnq9nr///pvevXsTFxdHzZo1mT9/vtVjQO6VhGE2m7l+/TqxsbFcunSJqKgoIiMjWbNmDak3Bxz5enrybvv29A0OpmJCAjqTCUwmVHo66efOoT96FJfMTAAOAC8DB//1Pp6enjRu3JhmzZpZtkqVKhXpZxVC3JuKNGHs2bOHV155hePHj3P69OnbEka9evWYMmUKLVq0YODAgYSFhfH666/TuXNnnn/+eXr16sXHH3/MjRs3GD9+vFXvafeEYTZr3U8TE7W2AJ3un83JCXQ6lNGILi1N65Xk7Q1ly0Lp0uDsjFKKs2fPcuDAAQ4fPszhw4c5cuQIsbGxmM1mdGhd15wALyAU6BYQwFNlyvDgxYvokpPzj692bbLefJPdtWuz7bffiI+Px8PDg2rVqtGoUSPq1q1b5F3xhBAlQ5EmjBdffJEBAwbQp08fIiMjcySM6Oho2rRpY2lA37FjBx988AGbN2/G39+f+Ph49Ho9Fy5c4JFHHiH61obcfGQnjA0DBuDp7IzKzESZTNqWman9Qr/5Sx2TCX16Ovr0dFzT0nA1GnE1GnFPT8cjLQ3PtDQ8jEac7uI/mRlIdHYmTikMZjMegCfgcctm1TSOpUpBRITWBdbDQ1sr291dO96wIdSqJSvdCSEKRZH+1Jw5c2aer8XExBAYGGjZr1ChApcvX+batWv4+vpaBo1lH8+L0WjM0SCclJQEQPMZM7BnhVQaWhLQ/WtzAjKAFCAd8AFK3zxe2mTC5hXQK1eGJk2gZUttq1dPSxJCCFHEHKZuwmw25+iuq5TCycnptuOgdfPNy7hx4yyDW251qHRpvJydUU5OqOyqo5vPlZMTODlhdnYmQ6/H6Oamba6uZLi7Y/TwIM3DA6OXF+menmT5+ODt74+vry9+fn74+fnh6+uLj48P3t7euLm5kZycTGJiImcNBpITEsiKi6OcTkcFvZ4H/f3R+/pqdwientqjhwe4umrVWtmbXl/so1+FECKbwySMSpUq5bhziI2NJTAwkICAABITEy3D4C9fvpzjTuTfRowYwbBhwyz7SUlJBAUF0eD8eYdu9BZCCEfnMIswV65cGXd3d3bs2AHArFmz6NChA3q9noiICBYtWpTjeF7c3Nzw9fXNsQkhhCi4YhmHERwcbGn07tixI2PGjKFx48b88ccfDBo0CIPBQMOGDZk5cyZubm5ER0fTr18/4uLiePDBB1m4cCGlS1vXGpCYmEipUqW4cOGCJA8hxH3Lx8fntup9W5X4gXvnzp2jWrVqxR2GEEIUq7i4OMqVK1egazhMG0ZhKVOmDAB///23Q051kd3G4qh3QI4eHzh+jBJfwUh8BZMdn6urVR3381XiE0Z2j6rsnkyOytHbWxw9PnD8GCW+gpH4Cqag1VHgQI3eQgghHJskDCGEEFZxHj169OjiDqKwOTs707p1a4edQ0niKzhHj1HiKxiJr2DsFV+J7yUlhBDCPqRKSgghhFUkYQghhLCKJAwhhBBWkYQhhBDCKpIwhBBCWEUShhBCCKtIwhBCCGEVSRhCCCGsIglDCCGEVSRhCCGEsIokDCGEEFZxmIRhMBgICQnh/Pnzt712+PBhGjduTM2aNRk4cCCZmZlWX1cpRVJSEjJllhBCFIxDJIw9e/YQERHBqVOncn29d+/eTJgwgdOnTwMwefJkq69tMBjw8/PDYDDYJVYhhLhfOUTCmDx5MhMnTiQwMPC216Kjo0lNTaVFixYA9O/fn6VLlxZ1iEIIcd9ziMnbZ86cmedrMTExORJJhQoVuHz5cp7ljUYjRqPRsp+UlGSfIIUQ4j7nEHcY+TGbzTnWolVKWdbpzs24cePw8/OzbEFBQUURphBClHgOcYeRn0qVKuW4o4iNjc216irbiBEjGDZsmGU/KSlJkoYQokgopcjKyiIzM5PMzEwyMjLIysoiKysLk8mU4zGv54Xx+vjx4+3y+Rw+YVSuXBl3d3d27NhBREQEs2bNokOHDnmWd3Nzw83NrQgjFEIUFbPZbKl2Tk9PJz09Pdfn1hzLyMggIyPD8uWe/QV/p+d3es0RlfiE0bFjR8aMGUPjxo2ZP38+gwYNwmAw0LBhQ954443iDk8IkYusrCwMBgNJSUkYDAYMBgOpqamkpKTkeLT1WPYXvaN+IefHyckJFxcXXFxccHZ2vu15bsfs/bq9lPg1vZOSkvDz8yMxMRFfX9/iDkcIh5WVlcWNGzdISEjg+vXrXL9+nYSEBBISEkhKSrJs2Qkht2OpqalFFq9Op8PNzQ13d3fc3d0tz//9mNdrrq6uuLq6otfr0ev1dn/u6uqKi4tLvm2uRcJkAjslDYe9wxBC3D2TyUR8fDxxcXHExcVx5coVy/PsZHBrUrh+/TqJiYl2e383Nzd8fX3x9vbGy8sLLy8vPD098fT0tDy39pinpyceHh63feHr9focHWJKDKMRkpJybgbD7cdSUiA5+Z/HW5/f+pieDna6L5CEIcQ9JCMjg5iYGC5dusTFixctW3ZCyH68du0aZrP5rt7D19eX0qVLU6ZMGcqUKUOpUqXw8/PD19cXX19ffHx8LM/z2nd1dbXzJ3dwZrP2BZ3fF7y1r2VkFPenyZMkDCEcyI0bNzh37hznzp0jKiqK8+fP50gOV65csel6/v7+BAQEUL58eQICAggICMDf39+SDMqUKXNbctDr9YX06RxQ9q/5vL7Erf3iL4yZJLy9wdf39s3HR9u8vbXNy+vOj3YiCUOIIqSU4urVq5w4cYJTp05ZkkP2lpCQcMdruLq6UqlSJSpWrGh5rFChwm2JoWzZsiXny18p7Zd3Sgqkpt758dZf+/klAHv/mndxyf1L/tYve2te9/a2W7uDPUnCEKIQKKW4ePEiJ06c4Pjx4zke4+Pj8z23fPnyVK1alapVq1K5cmWCgoKoVKmSJTmULVs2/7r7tDRITITz5//5kjQYtC/TjAzIzPxny8rK+dxk+mczm3PuF/TY3ZyflaUlgNRUbb+weHnl/aV+py/5W8u5u0NJbFe5SRKGEAWglOLChQscOXKEY8eOWRLDyZMn85zwUqfTUaVKFWrXrk316tWpWrUqVapUsTx65VeFkJwMR47AmTPadvYsxMZCXNw/W0pKIX1aB6HXa1/wnp45H//93M/Pui9/B/0174gkYQhhJbPZzMmTJ9m1axeHDh3izz//5MiRI3n2LnJxcaFGjRrUqVOHhx56yPJYq1YtPDw87vyGly7BoUNw+LC2/fGHliSsodNpX4TZ9d3Zdd6urtoXbm6bi4v2xZm9OTnl3M/rmC1lbT3m4qIlgVuTQ0mpZrsHScIQIh9KKX7//XfmzZvHkiVLcq1O0uv1PPTQQ9StW5c6depYEkP16tVta0PIyoJNm2DxYoiMhOjo3MuVLQvVq2tbtWpQsSIEBPyzlSunJYfi7v8vShxJGEL8i8lk4rfffmP58uWsWLGCCxcuWF7z8PCgadOmNGnShNDQUOrXr0/t2rUL1o30yBGYMwfmz9eql7I5O0OdOhAWBqGh/zyWLVuATyfE3ZOEIQRaddOvv/7KkiVLWLVqFVevXrW85u3tTbdu3ejTpw+tWrWyzxiDK1dgwQKYPVuraspWtiz07AldukB4uHanIISDkIQh7ltKKY4ePcrixYuZN28e0bdUAZUpU4auXbvSrVs32rVrZ12bw52YzbBxI3z/Paxf/0+vH71eSxD9+kH79lo7gxAOqEAJo2nTpowdO5bHH3/8ttdatWrFtm3bCnJ5IezObDZz4MABVq5cyfLlyzl58qTltVKlSvH888/To0cPWrZsiYuLnX5PZWXB9OkwfnzORutmzbQk8eyz4O9vn/cSohAV6C/i77//5sUXX2Tw4MGMHDkyx2uy0p1wJJmZmfz44498+umnOdokXF1d6dChA88++yzdunWzz53Erc6ehd69Yfdubd/PDwYMgJdfhtq17fteQhSyAiWMwMBAVq1aRY8ePfj9999ZsGABpUqVAiiZk4KJe865c+dYvHgxM2bM4MzNX/fe3t506NCBp556ik6dOuHn51c4bz53Lrz6qjZ2ws8PxoyBgQPtOlWDEEWpwPfcQUFB/PbbbwwdOpSGDRuybNkyGjRoQAmfNV04sMuXL7Nw4UIWL17M3r17LcfLlSvHqFGjGDRoEO7u7oUXQFKSlijmz9f2W7bUkseDDxbeewpRBOxSSavX6/n+++9ZsGABTzzxBOPGjZM7DFHkzp49yxdffMGsWbPIuDlHkJOTE48++ijPP/88zzzzDD4+PoUbxJ498MILcO6c1i129GgYMUJGEosSoUAJw/9fDXUvvPACYWFhPPPMM/z1118FCkwIa8XHxzNy5EimTJlimdL74Ycfpk+fPjz99NOUL1++8IMwmeCLL2DUKK2Ru3JlrdtseHjhv7cQRaRQVtxLTU1l2bJl9OnTx96XtpmsuFdyKaX48ccfeffdd7l+/ToAHTp0YMSIEURERBRdIPHx8Pzz2iht0Ho9TZkCN9vzhCgpZIlWcU9SSjFixAg+//xzAOrVq8fEiRNp3bp10QZy5Ag89RRERWnzHE2cCC++WKJnLBX3Lxm4J+45ZrOZN998k4kTJwIwduxY3n33XfuNm7DWtm3QsaM29XaVKrByJdSvX7QxCFGECu0vLCMj4/5bplEUOpPJxODBg5k+fToAP/zwA4MHDy76QA4e1EZnp6ZC27awZAmUKVP0cQhRhOwynWXHjh1zzL2zd+9ewsLC7HFpISxMJhP9+/dn+vTpODk5MWvWrOJJFmfOQIcO2qJEbdrA2rWSLMR9wS53GO3ataNJkyZ8/fXX7N+/n8WLF/Pdd9/Z49JCWIwePZp58+bh4uLC/PnzefbZZ4s+iNhYeOIJbaGiBg20aqjCHNMhhAOxW6P3ihUr6NGjBwEBARw4cIDAwEB7XLbApNG7ZFi2bBk9evQAYM6cOcXTAy81FVq1gv37tXUodu6EouiyK4SDsEuV1MiRIxk6dChLlixhyJAhhIeHs3z5cntcWgi2b99Or169ABg6dGjxJAultDmg9u/XpiDfuFGShbjv2KVK6sSJExw8eJCyNxd26dKlC/3796d79+72uLy4jx04cICuXbtiNBrp2rUrX375ZfEE8umn2kp4Li6wbJl2hyHEfcYudxhLly4F4LfffsNsNlOxYkX27dtnj0uL+5RSimnTptGiRQsSExN55JFHWLRoUdF3nQVtxPYHH2jPv/tOmxtKiPuQXRLGzz//TPPmzenbty9xcXHUqlWLdevW2ePS4j6UkpJCv379ePnllzEajXTu3Jk1a9bYf+pxa2zfrg3EAxg2DF55pehjEMJB2CVhjB49mt27d+Pn58cDDzzA7t27+SD7F5kQNjh//jzNmjVj7ty5ODs789lnn7Fq1SrLtPlF6q+/tFHcGRnw9NPwv/8VfQxCOBC73N/rdLocExHWqFHDHpcV95kzZ87QqlUrYmJieOCBB1i8eDEti6v6JyNDmx8qIQEeflibntzJLr+vhLhn2SVhVK5cmdWrVwOQkJDAxIkTCQ4OtselxX3iwoULtG3blpiYGOrWrcuGDRuoVKlS8QU0ahQcOKANyFu6FIqjOkwIB2OXn0yTJ0/mp59+4uLFi1SrVo0///yTKVOm2OPS4j4QFxdHu3bt+Pvvv6lZsya//vpr8SaLrVu1qcpBW4u7YsXii0UIByKz1YpidePGDdq0acPhw4ctqzc+WJwr012/rk0geOkSvPQSTJ1afLEI4WAKVCVVpUqVfFfWO3fuXEEuL0q4lJQUOnfuzOHDhwkICGDz5s3FmyyUgpdf1pJFzZrw9dfFF4sQDqhACSMyMhKlFGPGjKF69er07dvXMs9PVFSUvWIUJZDRaKR79+7s3LmTUqVK8csvv1CzZs3iDWrmTG1QnouLNvbCy6t44xHCwdilSqpx48bs378/x7FGjRpx4MCBgl66wKRKyvFkZWXx3HPPsXz5cry8vNi0aRPNmzcv3qDOnIGwMEhJgc8+g3ffLd54hHBAdmn0VkqxefNmy/6aNWuKZ0SuuCcMGzaM5cuX4+rqysqVK4s/WWRlQZ8+WrJo3Rr++9/ijUcIB2WXb/Xp06fTr18/YmJiMJvNVKlShblz59rj0qKEmTNnjmWlvIULF/LYY48Vc0TAuHGwezf4+cHs2eDsXNwRCeGQ7HKH0aBBA44cOcKpU6c4c+YMBw4coE6dOlafv2DBAurUqUONGjVyXUdjypQpBAYGEhYWRlhYGO+//749whZFbMeOHQwaNAiADz/80DEmpzx0CMaM0Z5PmgTF2eguhIOzSxvGoUOH+PTTT7l+/Tq3Xm7Lli13PPfSpUuEh4dz8OBB3N3dCQ8PZ968eYSEhFjKDBw4kM6dO9OtWzebY5M2DMcQExPDww8/zIULF+jRoweLFy/GqbhHTmdkQJMmcOQI9OihLbOaT68/Ie53dqmS6tevHwMGDCAsLCzfbra52bx5M23btrVMLdKjRw+WLl2aI2Hs27ePmJgYPvzwQ8LCwvj222+LZ24hYTOlFBs3buTll1/mwoUL1KhRgx9//LH4kwXAJ59oyaJsWe3uQpKFEPmyS8Jwc3PjzTffvKtzY2JicqzOV6FCBfbu3WvZN5vNBAUFMXLkSJo1a8b777/PG2+8wZw5c3K9ntFoxGg0WvaTkpLuKi5RMCaTiVWrVjF+/Hh27doFQPXq1dmwYYNj3OkdOqStcQHw/fcQEFC88QhxD7DLz7yIiAhWrlxJRkaGzeeazeYcdyVKqRy/Pp2cnPj55595+OGH0el0DB8+nLVr1+Z5vXHjxuHn52fZgoKCbI5J3D2lFIsWLaJmzZo8/fTT7Nq1Czc3N9566y0OHjxI1apViztErSqqf3+td1SPHvDMM8UdkRD3BLskjPnz59O9e3fc3d1xcnLCyckJZyt7mlSqVInLly9b9mNjY3PccVy9etXSqwa0X675ddkdMWIEiYmJlu3ChQt38YnE3VBKMWjQIJ5//nnOnTtHmTJleP/994mKiuKrr77Cx8enuEPUfP55zqooIYR1VDG7ePGiqly5srpy5YpKTk5WISEhas+ePZbX09LSVNmyZdX+/fuVUkqNGjVKvfzyy1ZfPzExUQEqMTHR7rGLnCZOnKgA5ezsrMaMGaNSUlKKO6TbXb6slKenUqDUggXFHY0Q95QCtWFMnTqVl19+mTHZ3RL/ZdSoUXe8RsWKFfn0009p06YNmZmZDBo0iKZNm9KxY0fGjBlD48aNWbx4MYMGDSItLY3atWsze/bsgoQtCkFMTAzvvfceAF999RVvvPFGMUeUh48/htRUaNYMevYs7miEuKcUKGGom11oVQF75r7wwgu88MILOY7dusTro48+yqFDhwr0HqJw/d///R8pKSmEh4fz+uuvF3c4uTtz5p/ZZz//XHpFCWEjmd5cFNiyZcvo0aMHAHv27KFp06bFHFEeevaExYuhQweQNeeFsJkDdIYX97KTJ0/Sr18/AN58803HTRY7d2rJQqfTpgIRQthMEoa4a0opXn31VVJSUmjTpg1ffvllcYeUO5MJXntNez5wIISGFm88Qtyj7JYwfvvtN0Bb0zu/cRKi5Fi/fj1bt27Fzc2NGTNmWN2VushNmwaHD0OpUv8M1hNC2MwuCWPYsGF8cXMN5PT0dCZOnMgHH3xgj0sLBzZ+/HgAhgwZQnBwcPEGk5f4eMierHLMGChXrnjjEeIeZpdG73r16nH06FHLvtlsJjQ0lD///LOgly4wafQuHL///jvh4eG4uLhw9uzZ4l1aNT//+Q9MngwhIXDwoLaanhDirtjlDsNsNmMwGCz7aWlpNk9CKO4t2WNv+vXr57jJ4vBhmDJFez5xoiQLIQrILn9Br732Go0bN6ZLly7odDrWrVvH0KFD7XFp4YD27t3Lhg0bcHZ2ZsSIEcUdTu5SU6FvX1AKnnsOWrUq7oiEuOfZbRzG4cOH2bJlCy4uLrRs2ZKwsDB7XLbApErK/rp06cLatWvp168fs2bNKu5wbpeRAd26aWMtypfXqqJumZ9MCHF37JIwsrKy2Lhx420LKPXt27egly4wSRj2tXfvXpo1a4aTkxMnT56kRo0axR1STkrB889rYy48PGDTJmjRorijEqJEsEuVVK9evTh79iz16tWztF3odDqHSBjCfpRSDB8+HIA+ffo4XrIA+O47LVno9bBypSQLIezILncYtWrV4sSJE46xitq/yB2G/axdu5YuXbrg5ubG6dOnHa+xOyoK6taFtDT49ltw1DmthLhH2eUbvlq1aqSmptrjUsJBJSQkMHjwYADeeOMNx0sWSsGQIVqyaN36n5HdQgi7sUuVlK+vL3Xr1qVFixa4u7tbjs+YMcMelxcO4LXXXuPSpUtUr16dDz/8sLjDud2yZbB+vVYV9cMPMhOtEIXALgmjQ4cOdOjQwR6XEg5o7ty5LFiwAGdnZ+bMmYOXl1dxh5RTYiJkd+N+7z2oXbt44xGihLJLwvj1118ZMGAArVu3tsflhAOJiori1VdfBeDDDz+kefPmxRzRv2RlaRMKxsRAtWrgqONChCgB7NKG8eSTT/LVV19Rq1YtxowZQ3R0tD0uK4qZUorXXnuN5ORkIiIi+L//+7/iDimnuDiIiNCqo1xcYN48rSutEKJQ2CVhPP3006xevZodO3ZQqlQpWrduzWOPPcbChQsxm832eAtRDFasWMG6detwdXVl2rRpjjUb7dWr8PjjsHs3eHvDkiXw8MPFHZUQJZrd+sH+9ddfTJw4kYkTJ1K7dm369u3Lpk2b6NWrl73eQhShy5cvW3pFDR8+nFq1ahVzRLdYvx7q14c//tBGcu/fr43sFkIUKru0YTRr1oyEhAT69+9PZGQkFVFe1rcAACAASURBVCtWBKB3795UqFDBHm8hCpnJZGLHjh1cvnyZgIAAPv30U65evUpoaCjvZ08PXtzOn4cvv4RJk7T9OnXgp5/AkZKZECWYXQbubdu2jVZ5TO6mlCrWmWtl4N6dLV++nKFDh3Lx4sUcx11dXTly5Ij97y5MJtixAy5fhgoVtHaIW6u7zGb48084ehT8/LQxFjNnwqpV2mugjbP44gtpsxCiCBX4DmPNmjXUrVsXgGXLljFr1izq16/P6NGj0ev1Ms25g1u+fDk9evQgt98NGRkZHDt2zL4JY/lyrQvsrcmpUiV44QUwGuHAAThyBJKScj+/XTsYNgzat7dfTEIIqxToDuOLL77gp59+Yvbs2WRmZtKiRQsmTJjAoUOHcHZ2ZsKECfaM9a7IHUbeTCYTwcHBt91ZZNPpdFSqVImoqCj7NHgvXw49emh3DHfi5QUNG4LBAAkJ0KmTNpK7Tp2CxyGEuCsFShihoaH8/vvveHp68t5773H+/HkWLVqEUoo6depw4sQJe8Z6VyRh5C0yMpI2bdrcsdzWrVsLPsbGZILg4Jx3Fv/m5aW1TzRsqA2+0+sL9p5CCLsqUC8pJycnPD09Ae1LpV27doD2y1Sqohzf5cuX7VouXzt25J8sAFJSoHJlbTlVSRZCOJwCtWHodDpu3LiBwWDg0KFDtL9Zr3zx4kVcZDlMh2dtDza79HSzNunYIzkJIQpFge4w3n33XcLCwmjevDmDBw+mYsWKLFmyhDZt2vDOO+/YK0ZRSCIiIggICMjzdZ1OR1BQEBEREQV/s1KlrCsn3bCFcFgFug147rnniIiI4Nq1a9SvXx8Ab29vpk2bJvNK3QNOnTpFenp6rq9lVyl+8803d9fgnZmptUds365VNR08mH95nU7rLWWP5CSEKBR2W9PbUUmjd+7++usvWrZsSWxsLFWqVMFoNBITE2N5PSgoiG+++Ybu3bvbfvGMDOjSBX75JefxcuW0KT10upw9pbLbu5Yuhbt5PyFEkZCGhvvQ+fPnadu2LbGxsYSEhLB161ZKlSplGeldoUIFIiIi7u7OIi0Nnn5aSxYeHjBqFAQGQkAAtGqlTeuR2ziMb76RZCGEg5M7jPvMxYsXadmyJVFRUdSuXZvIyEjKly9vn4srBc8+q90peHhoa2o//vjt5e400lsI4ZDkDuM+EhsbS9u2bYmKiqJatWr8+uuveScLsxlOn4b/b+++w6K41j+Af5cuiIDYkCYqKiBIsKNiS2KLDY1XjRXFJOZG8/MmXDXGgt0kxpLEJBpjj15rcjVFURGNinrtGiNGqoD0stK2vL8/jiysgOzKwq7wfp5nHnbKzrw7rvPumXPmnO3bgZMnATs7cfEPChKvy7Nhg0gWpqaiJFFBdzEwNhbDqDLGXipcwqhhBQUFuHjxIrKzs9GqVSt4enrCyKj8xmpEhF27duHw4cPIy8uDn58fpk+fjpYtW2p93NTUVPTt2xd37tyBi4sLIiIi4OrqWnbD8+eBTz4Rf8urELexAZYvB959Fygd919/Ae3biwGNNm7kMbUZq42olsvOziYAlJ2dre9Q6Pfff6fGjRsTANXk6upKK1asoNzcXLVt79+/T3369FHbFgCZmprSRx99RFKptPID3rhB9K9/Ud6AAXTYxoaWADTL1pbi//MfosePiZRKsZ1MRnT5MlFgIJG4sSQmU1OiAQOIdu4kWr+eqH37knUBAWL/RGI/xe8dNKhkv4yxWqXOJIx3332XoqOjq+04CoWC0tLSKCcnp8w6pVJJq1atIiMjIwJATZs2pU6dOpGjpSX5AdQHoG729vT5Z59RbGwsLV++nCwsLAgA1atXjz755BP67rvvqH///qrE4eLiQj/99FP5wcjlRCEhREZG6gng2al+faJGjYiMjUuWGRkRTZ9OdPeuSCTqH5Loyy+JrKxKtm/ThsjFRbw2Nia6fr0azi5jzBDUmYQRAdBSU1PavGoVKbX9BZyZSRQaSuThQWRiQmRnRzR0KNH+/XT5wgUKDAykBg0aqC7mrVu3psWLF1NMTAxlZmbSm2++SQDICKBVgwaRbOZM9V/rT6cbAPUsVZp47bXX6O+//yYqLCTato0oOJiiRo2i4Q4Oqm2GDx9OsbGxJbEWFhKNGaPa5yGAZgK0xt6ecsaPJ+rfn8jVlUgiUT++uTnR2LFEt29Xfj6io4nefFP9/WZmRD/8oN15ZYy9VOpMwsh+emHLAOhTHx9KSkpS206hUNDp06dpy5YtdObMGVIoFGLFb78ROTpW+Cs9GqB3ADJ75tZR8WRmZkZNAFphZETSBg3K7qNZM1K2aUMyExMigGQAzW7WjHbu3CkSW2IiUefOZd4X5epKvYyNCQBZWlrSxx9/TEkPHxINHkwEUJFEQmOexjBu3DjKyspSPzH5+UT37hHdukWUkCBKD9pKSiI6eZLo1Clxi4sxVqsZRMLYvXs3eXh4UOvWrWnjxo1l1l+7do06duxI7u7uFBQUREVFRRrvuzhhZG7aRCnNm6suuHvNzWnzp5/S3bt3aePGjfRKy5bkAZD504tsN19fSpswoeQi7e5Oih076Nzu3bRk2DBaZWxMKaUu4IVNmpBs3TrKTEqiXbt2qW4fjQYop/StIVtboqlTifbvV7/IZmSIX/iAKMX88QeRVErk5yeW2dmJ20zjx4u6haf7u2hrS50BagpQ+NNSwxOAXgeoQYMGtG3bNu1LVIwxVg69J4yEhARycXGhtLQ0kkql5OPjQzdv3lTbxsvLi86dO0dEREFBQbRhwwaN969W6S2XU/J775H86cU2FaBwgOJLXfhlEgndNjKixFLLEt98kz567z1q1qyZWunh1R49KPbDD4lKJSLy8CC6do2ooICkU6aULPfzIzpwQNwyqohcTjR6tNjewYHI31+8btSI6P79ku1iYoiCg0Vieabkkf30ttaoUaMoISFBq38Lxhh7Hr0njG3bttHUqVNV86GhobRw4ULVfExMDLm5uanmIyIiKCAgQOP9l9dKqvDkSUpv2rTMxVZZujL3aSIZ9MwtJjs7O5oxYwaFh4eX/HLPzyf66iui4n2amooLfvG+5s4l0rRUlJMjkk7xe01Nic6eLX/bv/8mmjJFVbmd5+1NZ776qlor9xljdZfeH9xLTExE8+bNVfMODg64dOnSc9c/b3yGwsJCFBYWquZzyhnq06xfPzSMjwfCw0XfRm5ugIcHJDY2QFwccPMmlCYm2Hf1Ki5+/jms5XIMGTIE48ePx4ABA2BmZqa+QwsLYOZM8ZTzjBnA4cPiKWZ7e2DHDmDwYM1PiLU1cOyYGIo0MRHYvBno2bP8bVu2FGNdr14NFBSgnosLAjQ/EmOMaUXvCUOpVKoNtkREag+yVbb+WStXrsSSJUsqP7CpqbgoP8vVFXB1hRGAfw0ahDnz5wOAZgNCNWoEHDwInD4N/Pkn8Oabog8lbbm5AffuiTKGJgMJvcgxGGNMS1UaD0MXnJyc1EoMycnJaiWKytY/a968ecjOzlZN8fHxVYpP69EDJRKgXz8x/nRVLuQmJjzqHGPMoOg9Ybz66qsICwtDSkoKnjx5gv3796tG7gMAV1dXWFhY4OzZswCAbdu2YdCgQRXuz9zcHA0aNFCbGGOMVZ3eb0k5OjpixYoV6Nu3L2QyGaZPn44uXbpg8ODBCA0NRadOnbB7925Mnz4dubm58PPzw6xZszTePz3tKqu8ugzGGKsrrK2ttbtbUo5a3/ngw4cP0apVK32HwRhjepWSkoLGjRtXaR96L2FUt4YNGwIA4uLiYGNjo+doysrJyYGzszPi4+MN8vaZoccHGH6MHF/VcHxVUxxfmdadL6DWJ4ziFlU2NjYG+Y9ZzNDrWww9PsDwY+T4qobjq5qq3o4CDKDSmzHG2MuBEwZjjDGNGC9evHixvoOobsbGxujTpw9MTAzzDhzHV3WGHiPHVzUcX9XoKr5a30qKMcaYbvAtKcYYYxrhhMEYY0wjnDAYY4xphBMGY4wxjXDCYIwxphFOGIwxxjTCCYMxxphGOGEwxhjTCCcMxhhjGuGEwRhjTCOcMBhjjGmk1icMIkJOTg64yyzGGKuaWp8wcnNzYWNjg9zcXH2HwhhjL7VanzAYY4zpBicMxhhjGjHM0T4YY8xQEAEyGZCXV/6Unw/I5WKSyUpePzuvUJTss3h87Wf/PrtMIgGMjABj4xefTEyAHj10cio4YTDG6g6FAkhNBZKSgORk8ffxYyAjA8jMLDtlZQFSqfrF/mWko0Y/nDAYY7VHUREQFwc8fAhER5f8jY4GHj0CUlKqdvE3MgKsrABLy5K/FhaAqan4JV96enaZkZEoMZS+eJf3uvQypVJMCkXVJh3hhMEYe/nIZEBUFHDnDnD7tvh7545YVtkFUiIBmjQBmjUDHBzE34YNATu78idra5EYLC1FEih9+6iO4YTBGDNsRMDffwOXLpVM164BBQXlb29hAbRsKSY3t5K/Tk4iQTRpIn7xM63xWWOMGRYiUVo4fVpMERFAenrZ7erXB7y8yk6OjnW6FFCdOGEwxvQvLQ345Rfg2DGRJFJT1debmwOvvAJ06SKmzp2B1q1FvQCrMZwwGGP68ddfwJEjwH//C1y4ICp3i1laAj17An37iumVVwAzM/3FygBwwmCM1aSEBGDvXuDHH4GrV9XXdegADB0KDBggShGcIAwOJwxWN2Vmirb3CoWoPL11C2jbFujYke9/61p+PvCf/wA//CDqI4qbjRobA6++CgwbBrzxBuDiot84WaU4YbC65e5dYMIE0cqmPD16AIsXiwsZq5q7d4FvvwV27BAPwBXr1QsYPx4YPRpo1Eh/8TGtSaiW9/udk5MDGxsbZGdno0GDBvoOh9W0wkLg3DkgLExctPbvL2lxY2Ul2tUbGYmmlg8fige/AHF7xMhI3Bbp0QN46y3Az09/n+NloVSKOom1a0VpoliLFkBwsEjWXJJ4aXHCYLWXVAr4+4vbTaW1bw/8+qtol19aUhKwahWwaZN4MOxZr7winiIeMADYulW03GFCQQGwcyfw+eeiMhsQt5yGDQPefht47TVu0VQLaJUwZDIZDhw4gHHjxiE5ORkHDhzAu+++C2Nj4+qMsUo4YdRRCgUwcaKoXJVIRAnB1RVo0ACYMQOwta34vQ8fAmfOAPb2wJMnwE8/iZJJ6VY8AQHAwYN8S0UqBb76SpQoUlLEMhsb4N13gX/+UzwTwWoNrRLGhAkTYG1tjU2bNiE9PR1z584FEWHLli3VGWOVcMKog5RKYPZs4MsvRbL47Tfg9derts8//wQ++wy4fLmkxFK/PjB/PjBqFNCmTdXjfpnk5QHffCNKZMXPTLi4AP/3f8C0aaI7DVb7kBa8vb3LLPPx8dFmFzUuOzubAFB2dra+Q2E1obCQaMwYItEWh+jbb3V/jGPHiGxtS45hakr03Xe6P44hKigg2rCBqFmzks/fqhXR9u1ERUX6jo5VM61vKiYlJalep6SkwIjvSzJDIZMBY8eKJpympsCuXeL2k64NHix+Va9eLSrHZTJxnOXLddaNtMEhAn7+WXS9MWuW6Brc1RX4/ntR+po0SZxzVrtpk132799PzZo1o1GjRtGoUaPIxcWFjhw5Ul3JTCe4hFFHyGREo0eLX7xmZkS//lozx1UqiRYsKPm1PXs2kUJRM8euKXfuEL32WslnbNaM6JtvRGmO1Sla1WFcunQJrq6u+OOPP2BiYoIuXbqgWbNm1ZjOqo7rMOqIJUvE8xNmZsDhw6IUUJPWrRP37wHgH/8Atm9/+VtRZWaKc/rVV6IRgZkZMGeOqLfhOoo6SauE4enpibt371ZnPDrHCaMOCA8XTV2LikTTzgkT9BPH7t3A1KniFlXPnsCBA0DTpvqJpSrkcmDzZuCTT0qeWRkxQlT6t2ql39iYXmmVMAIDA9G+fXv4+/vD0tJStTwgIKBagtMFThi13Pz5wMqV4vWwYaIzO3127REWJlpN5eSIeW9v8bRz9+76i0kbp08DH3wA3Lwp5r28ROmJn3xn0DJh9O3bt+wOJBKcOnVKp0HpEieMWuzwYSAwULyeMgVYv148Z6Fv9+6JpFG6NO7tLSrj27XTX1zPEx0NfPSReLYEECPNhYYC77zDgw2xEjVZYbJ7927y8PCg1q1b08aNG8us/+abb8jBwYE6dOhAHTp0oPnz5xMRUWZmJg0ePJjatWtHvXr1osTERI2PyZXetdTjx0SNGolK2Fmz9B1NWQoF0d9/Ew0cWFJZDBBdvarvyNRJpUQff0xkbi7iMzIieu89orQ0fUfGDJBGCSM4OJiIiPr06UN9+/YtM2kiISGBXFxcKC0tjaRSKfn4+NDNmzfVtgkKCqJDhw6Vee97771Hy5YtIyKiHTt2UGBgoEbHJOKEUSsplUSjRokLnI+PYbfWKSggeuutkoRha0t08aK+oxIJbedOIkfHktj69SN65v8kY6VpdEvqf//7Hzp27IgzZ86Uu753796VlmS2b9+OM2fOYOvWrQCApUuXQi6XY8mSJaptfHx84OjoiEePHsHX1xcbNmyAra0t3NzccObMGbi4uEAul8PW1hYZGRkw06C/fL4lVQtt3SqeJjYxEU9e+/rqO6LK5eQAQ4aIjhCtrIBDh6r+9PmLOn9e1FNcvizm3dxEH1AjRnDX7uy5NHrqrmPHjgAAV1dX7N+/H71794aDgwM2btwId3d3jQ6UmJiI5s2bq+YdHBzUHgJUKpVwdnbGokWLcOPGDTg5OWHWrFll3mtiYgJbW1ukpaWVe5zCwkLk5OSoTawWuXMHmDlTvF6y5OVIFoCoW/ntN9EJ35MnInns3l2zMcTGigcbe/QQyaJ+fWDFClHXMnIkJwtWKa0e0548eTK6desGAHBzc8Pw4cMxefJkjd6rVCohKfWFJCK1p8SNjIxw7NgxdOvWDRKJBCEhITh69Khq29KefW9pK1euhI2NjWpydnbW5iMyQ0YknjIuLAQGDQLmztV3RNqxsgKOHgXGjRNNVydMAJYtE884VKdHj0RHgG3aAPv2icQwfToQFQXMmwdYWFTv8VmtoVXCyMrKwoSnbdxNTU0xceJEpBe3066Ek5OTWokiOTlZrcSRmpqKjRs3quYVCgVMnrbOcHR0RHJyMgBALpcjNzcX9vb25R5n3rx5yM7OVk3x8fHafERmyDZvBk6dEg/EffXVy9ldtpmZ6LKk+CG/Tz4Rw5F++aX6IEO6kJAgbj21aiXOV1ER0K+fGBp182bAwB+6ZQZImwqPHj160C+//KKaP3HiBAUEBGj03oSEBHJ1daXHjx+TVColb29vioyMVK3Pz8+nRo0a0ZUrV4iIaOHChTRjxgwiIpo5cyYtXbqUiESl9+DBgzWOmSu9a4mkJCIbG1E5+/nn+o5GN77/nsjKqqTS2dKSKCiIaO9e8XlfhFJJ9McfRP/4B5Gxccm+e/YkOnVKt/GzOkerhHH79m3y9fUle3t7sre3Jz8/P7pz547G79+9ezd5enqSu7s7rV69moiIBg0aRJcvXyYiopMnT5Kvry+1bduWhg8fTllZWURElJ6eTkOHDiVPT0/y9/en6OhojY/JCaOWmDpVXPg6dSKSy/Udje4kJhKtXUvUvr1681uJRDTJPXCg8lZgublEJ04QzZtH1LKl+n769BHrlMqa+TysVnuhEfcyMjJgYmLyUrQ64lZStUBSkugZVSYDLlwAntaj1SpEYkjTw4fF4E3Xr5ess7cX42C3aQNYWgL5+eL2VXQ08OABEBOjPriTpaXoz2r2bNGbLmM6otEjnKGhoc9dv3DhQp0Ew1i5vv66pH+m2pgsAFER3bu3mACRCLZuBbZtEwnzyJHnv9/VVbR+GjYMeOMNUcHOmI5plDBeoBDCmG7k54uR3QBRgVtXtG4tmryGhgKRkcDFi6K105MnIhlYWwMtWojt3N25ApvViBe6JfUy4VtSL7ktW4DgYHFxfPAAMODx4xmr7V7CdomsziASPaUCwPvvc7JgTM84YTDDFRYmnuyuX190BcIY0ytOGMwwKZXAqlXidVAQYGOj33gYY5pVeu/YseO56ydNmqSTYBgDILrKeOcd8VS3mVndquxmzIBplDBOnz5d4TqJRMIJg+kOEfDee6Ky28gI+P570ZsqY0zvuJUUMyybNoneaCUS4McfxQNojDGDwHUYzHCcOiV6owXEON2cLBgzKJwwmGF49AgYM0Z0+z1uHBASou+IGGPP4ITB9C86Ghg6FEhPB155RXSJwYP5MGZwtEoYDx48wK5du0BEmDFjBjp37oxz585VV2ysLnj4EOjUCbh2TXSyt38/D+jDmIHSKmFMnToVSqUSP//8M+7fv4+1a9fio48+qq7YWG2lUADh4aJSOygIyMgQJYtLl8RgP4wxg6RRs9piubm5mDRpEmbMmIFx48ahV69eKCoqqq7YWG106JDodjshQX35xIlAy5b6iYkxphGtShjm5uY4evQofv75ZwwZMgQnTpxQG6ebsec6dAgYPbpssgCAf/1LrGeMVVleXh7u3r2LX375BV999ZXO9qvVcxiRkZFYs2YNRowYgYkTJ2LIkCFYvHgxOnfurLOAdI2fwzAQCoXocba8ZAGISm4nJ1EBzp0MMvZcRUVFiI+PR3R0tNoUExOD6OhoPH78WG17XT1up1HCiIiIgKWlJTw8PGD1kg3MwgnDQISHA337Vr7d6dNAnz7VHQ1jBk2hUCAxMbHcZBAdHY1Hjx5BWXqUxXI0aNAAbm5uaNGiBY5UNgCXhjSqw5g8eTIsLS0REBCATZs26eTArI4gAs6eFV19aCIpqXrjYcwAKJVKJCcnIzY2FjExMWrJIDo6GnFxcZDJZM/dR7169dCiRQtVUnBzc1NNLVq0gJ2dnc6rDDRKGNHR0To9KKsjiopEt+S7dmn+HgeH6ouHsRqSm5uL+Ph4xMXFlTslJCRUmhBMTEzg6upaYUJo2rRpjdcha9VK6vjx45g/fz4yMzNBRCAiSCQSPHz4sLriYy+r1FRRwR0RIeokhg8HTpwAcnPL3764DqNXr5qNkzEtEBGysrKQmJiIxMREJCUlITExEQkJCWoJITMzs9J9GRsbw8nJCS4uLmrJoDghODo6wtjA6vO0Shjvv/8+Vq9eDV9fX24dxSpWUAD07w/cuiXGnv7Pf4CBA0taSQHiVlWx4u/SunVc4c30Qi6XIz09HampqUhJSVElgvKmgoICjfZpZ2cHFxeXCicHBweDSwiV0SphNGzYECNGjHjhg+3ZswfLli2DTCbD7Nmz8c9//lNt/YkTJzB37lwoFArY29tj69atcHV1xV9//YXOnTuj5dN2+k2bNsXvv//+wnGwarZsmUgWTZqISmxPT7E8MBA4cKDscxhOTiJZBAbqJ15WqygUCmRnZyMzMxNZWVnIyspCWlqaKhmkpqaqpuL5jIwMrVoSNWzYEM2bN4eDgwOaN28OR0dHuLq6qpKBs7MzrK2tq/FT6odWzWoXLVoEW1tbDBkyBBalum9wcXGp9L2PHj2Cv78/rl69CgsLC/j7+2PXrl3w9vYGIJqJubi4ICIiAm3atMHmzZtx9OhR/PTTT9i5cyeuXLmC9evXa/0BuZVUDbt/H/DyEp0IHjxYfhJQKERFeFKSqLPo1YtLFnWQUqmEQqGAXC6HQqFAfn4+njx5AqlUiidPnqhNzy6TSqXIzs5GVlaWWmLIzMxEbkW3PSshkUjQsGFDNG7cGM2bN69watasGerVq6fjs/Fy0KqEUTzy3oYNG1TLNK3DCAsLQ//+/WFvbw8AGD16NA4cOKBKGIWFhVi/fj3atGkDAHjllVfw9ddfAwAuX76Ma9euwdfXF/b29tiwYQO8vLy0CZ3VlBUrRLIYPLjiEoOx8Qs1nY2NjYWRkRGcnZ1Vy/Ly8hAeHo7w8HD8+eefkEgksLS0VE329vbw8/NDly5d0KRJEzx58sSgfjgolUoUFhaqpqKiIshkMshkMsjlctVrTZfJ5XLVVPpirMnfmt62uofisbKygq2tLezs7FSJoEmTJmjcuHG5rxs2bAgTE60uiXWOVmenKq2lEhMT0bx5c9W8g4MDLl26pJq3trbGP56Of6BQKLB48WIMGzYMAGBpaYlJkyZh2rRpOH78OEaMGIG7d+/C1NS0zHGK/+MVy8nJeeGYmZbi4oDdu8XrRYt0ttubN29iyZIlOPT0SXBfX18MHz4ccrkc69evh1Qq1Wg/EokERITGjRvD29sb3bt3h7+/P7p37w47O7ty35ORkYH79+8jKioKmZmZkEqlkEqlyM/Pr/ACXjoBFBQUqM0/u1wul+vsPNUG9erVg5WVFerXrw8rKyvV9Ox8cTIonuzs7NRe29jYlHt9YFWjVcL466+/8PXXX0MqlYKIoFAo8PDhQ5w9e7bS9yqVSrWKciKCkVHZnkny8/MxYcIEKJVKLFiwAACwatUq1fqBAwfCysoKf/75J3x8fMq8f+XKlViyZIk2H4vpytq1onTRrx/QpUuVdhUVFYVNmzbh9OnTuH79umq5RCLB9evX1Za5uLhgwIAB8PPzg4mJCfLy8pCfn4+8vDzEx8fjypUruHPnjupBp9TUVJw6dQqnTp1S7cPJyQmWlpawsrJCkyZNkJ2djQcPHiAtLa1Kn0NbpqamapOJiUmZZc9bb2JiopqMjY3LvK7srzbb6nL/xsbGMDc3f+kqgesarRLGhAkTMHToUJw9exZTpkzBkSNHVLeUKuPk5KSWWJKTk9VKHACQmZmJIUOGoGXLlti7d6/qF8Knn36Kd955R1WJpFAoKiw6zps3D3PmzFHN5+TkqN3CYFWQnw+sXg1ERYneZQcNEhXaEonocXbzZrHdv/+t0e5kMpnar0CpVIpDhw5h7969+O2331S3LExMTDBy5EgsWrQITZs2xU8//YSTJ09CoVBg5MiRGDNmTLk/BP+OaAAAGONJREFUPkrLycmBVCqFtbU1/vrrL1y9ehXnz5/H+fPnERUVhYSKuiwB4OjoiDZt2qBx48aoX78+6tevj3r16pV78TYzM4O5uXmFk4WFRYXrzMzMuPUhM2ykBR8fHyIimjt3Lp09e5by8vLI09NTo/cmJCSQq6srPX78mKRSKXl7e1NkZKTaNn369KEPPviAlEql2vJBgwbRF198QUREJ0+eJA8PD1IoFBodNzs7mwBQdna2RtuzCqSmEnXvTiQaxJZMjRsTTZ5MBbNnEwGU1LQpbf7uOyooKCh3N0qlkrZs2UKtWrUiANS6dWvy8fGhtm3bkoWFBQFQTUOGDKG9e/dSUlJStX60jIwMunjxIkVERNCxY8fohx9+oAMHDtDVq1cpNze3Wo/N2MtEq4TRrVs3KigooK1bt9KGDRuIiMjNzU3j9+/evZs8PT3J3d2dVq9eTUQiGVy+fJmOHz9OAMjb25s6dOhAHTp0oNdff52IiGJiYqhfv37k5eVFnTp1ohs3bmh8TE4YOpCcTOTpKRKErS3RvHlEAwcSmZuXSSCzn17sPTw86Pz580QkLshLly6lrl27Uv369dWSwrNT69atadGiRXTv3j09f2jG2LO0alb75Zdf4siRI9i1axe6d++Otm3bQqlU4vjx4zot9egSN6utIiIxfOqxY4CjI3D8eMlzFXl5wB9/IPW992AfFYWjAMYCMK5fX1UR7eXlhdjYWLWK6Xr16mHhwoUYO3YsHj58CIVCAXNzczRq1AgeHh58W4YxQ6VNdomMjKScnBwiIoqLi6NDhw6RVCqthjymO1zCqKJdu0TpwcyM6PbtMqufPHlCTk5OJAFo+fLlRESUnp5OU6ZMIYlEoio5eHt709atW+n27dtUWFhY05+CMaYDWpUwPD09cffu3WpLXtWBSxhVkJoKtGsnKrSXLQM+/rjMJitXrsT8+fPh4uKCe/fuqT3QlJycjAsXLsDBwQFdu3blkgNjLzmtEkZgYCDat28Pf39/WFpaqpYHBARUS3C6wAmjCj78EPj8c8DHB7hyBXimXbtCoYCbmxvi4+Oxfft2TJo0SU+BMsZqglYJo285A+BIJBK19uyGhhPGC0pOBtzcREeCv/wimtA+4/jx4xgwYADs7OyQmJio1l0MY6z20eo5jNOnTwMQfb3L5fIKn45ltcC334pk0bWr6Gm2HN9//z0A4K233uJkwVgd8PynnZ7x8OFDdOnSBS1atECrVq3g4+ODe/fuVVdsTF8UipIR8mbNKul+vJS8vDzVsI9Tp06tyegYY3qiVcJ4++23ERISgvT0dGRkZGDBggWYMWNGdcXG9OXYMdH9uL19hR0Inj17FkVFRXBwcICfn18NB8gY0wetEkZaWhpGFw+AA2DMmDHIysrSeVBMj4hEj7OAGF61gltNGzduBACMHDmypiJjjOmZVgnDwsICly9fVs1funRJrbUUqwVOnQIiI0WiKNUnl1wuR1RUFAoKCnD//n0cO3YMADB79mx9RcoYq2FaVXqvX78eY8aMUVV2Z2RkYN++fdUSGNOT5cvF3+BgoGlTAMDt27cxfPhwPHz4EPb29qrWZkOGDFGNX8IYq/20alYLiF+a9+/fh0KhQNu2bWFmZlZdsekEN6vVwh9/AD17iuct/v4bcHZGWloafHx8kJSUpLapjY0N/vjjDx7IirE6RKMSRmho6HPXL1y4UCfBMB0pKgLefx/Yswdwdwe++ALo3bvy9xWXLiZPBp52CT9r1iwkJSXBw8MDZ86cwaVLl/DgwQMEBgZyt/GM1TEalTBMTU3RqFEjBAYGomnTpmWGVlykw9HVdK1OljDmzhXjVhQzNQWOHgVef73CtyguXcLZrl2RJJHAYedO9Bo7FleuXEG3bt0gkUhw5coVbg3FWB2nUcJISUnBvn37cODAAVhaWmLs2LEIDAxUDWhkyOpcwkhMBFxdxch3mzYBJ08CBw4ADRsCN2+KHmefcejQIcx+6y0kFBSoljVv3hxFRUVIS0vDxIkTVeO5M8bqLq3rMOLj47F3714cOXIEzZs3x/jx4w26aWVtTRipqam4desW2rVrpz5y4ZIlwOLFoi7i7FmgsBDo0QP43/+A0aOB/fvV9nPo0CGMHjUKFX0JHBwccPfuXdja2lbbZ2GMvSRepItbmUxGR48epR49epCdnV2Vu8ytTrWte3OlUkmrVq0iU1NTAkAmJia0dOlSMUqhTEbUvLnojvzHH0vedP06kZGRWP7rr6rFcrmcnJo3f+6ARs2aNSO5XK6HT8oYMzQalzAUCgWOHz+Offv24eTJkwgICMA//vEPDBw40KBbStW2EsayZcvwySefAACaNWuG5ORkAMAXX3yBD9q1E50E2tuLW1Ol/13+7/+AdeugdHbGltmzERYZiYT4eFy4eLHSY54+fRp9+vSpjo/DGHuZaJJVpk2bRo6OjjR69Gjav38/5efnV28a06HaVMLYu3ev6pf/559/TkqlktasWUMAyNjYmB6/+qooRbz/ftk35+RQbuPGRABtBUgCUOBzShalpz179tT8h2WMGRyNShhGRkZo1KgRrKysAKDMQDgPHz7UWQLTtdpSwrh06RICAgJQWFiIOXPm4PPPPwcAEBEmTpyIn3fvRgoACwC4fBno1En1XoVCgQ8//BDX163DSYjH+wssLHCxoABlO6wvi0sYjDFAw0rv2NjY5653dXXVWUC69tyEcfOmGKPa1RUYMaLMAEGG4tGjR+jcuTOSkpIwdOhQHD58GMbGxqr1ubm52NCqFT5OTUVc/fpwysqC0dP1MpkMEydOVD2Rf/CNNzDy+HFIioqgqFcPLczN8Sg7u0xTaUD8MHByckJ0dLTa8RhjdZQ+izc1ocJbUuvWEUkk4hYOQNSxI1FMjH6CfI68vDzq1KkTAaD27dtTTno60bNjYufmUmHTpkQABQO0Zs0a1XuHDx9OAMjU1JT27dsntn/8mOjMGaKsLDp48CBJJBK18bcBqJYdPHiwhj8xY8xQ1c2E8fvvJcmib1+ihg3F6yZNiC5cKLuTBw+IwsKI0tKqFItSqaTY2FhKSkrSePtxY8dSP4B2mJtToZubiNPYWCS4jz8WrZ5GjiQCKKdhQzJ/erGfNGkStWvXjgCQubk5HT16tMLjHDx4kJycnNQShrOzMycLxpiaGk0Yu3fvJg8PD2rdujVt3LixzPpr165Rx44dyd3dnYKCgqioqIiIiGJjY6lXr17Utm1bGjp0KOXk5Gh8zDIJIyGB5E8TxCU/PwoJCaEfV68mWfv24mJsbk60fDnRjh1EM2YQFV+kASIzM6JZs4iePNH6s//94AGtcHOjiwBdAGh1u3b0vytXKtxeqVTSgunTKaz42JVNpqakDAujt99+W+3C36RJEwoPD680PrlcTqdPn6Y9e/bQ6dOnuSktY6wMrR/ce1GPHj2Cv78/rl69CgsLC/j7+2PXrl3w9vZWbdO+fXt8++236NGjB6ZNmwZfX1+8//77eOONNzBu3Di89dZbWLp0KbKyslSVvpUpXYdx5cIFNBozBj45ObgGoDuAwqfbOVhb47ybG1rcvFl2J6amQLNmQHy8mPfyEk9Pt2unUQwJ8fE40bYtpubnqy3fDuCXESPQ+7XX0KBBA0gkEhAR5HI5fv3xRyw4fhzeAORmZjAJCgLeeAPo3Fk8jBceLsbavnhRjL29eDEQEABAjLUdFhYGR0dHTJw4EQ0bNtQoTsYYe54aSxjbt2/HmTNnsHXrVgDA0qVLIZfLsWTJEgCiYr1v376qFldnz57FggULEBYWBnt7e6Snp8PU1BTx8fHo2bNnpRXxxYoTRlBQELy2bsUcANkApnp7o3H37qhXrx7CwsJw584dGAHY4u+PSVZWMJbJAF9f/OnoiK1//41MmQwzW7aE34YNwOPHQP36wDffAOPHA7GxovL8yhVx8Z4yBXBwAAAU5OfjkJsbxj9+DCWAnJAQEBEafPYZjInwG4DRAJ6UirkegOMAegLIs7GBZWQk0LZtVf8JGGOsamqqKLNixQr6+OOPVfObN2+m4OBg1fz58+epR48eqvmoqChyd3enxMREcnR0VC2XyWRkampa4XEKCgooOztbNcXHxxMAeq/U7ZvU775Te49cLqc1a9aQkZERASB3d3dauHAh9e3bt8wzCWtDQoj69Cm5FWRuXvb2kIUF0YcfEiUk0AkfH9XylJUrSw76yy+ksLAgAugvW1sK7NWL+vfvT4P69aNL9vZEAMmtrYlu3qzKaWeMMZ3RasS9qlAqlWrPbxARjIyMKl3/7HIAau971sqVK2FjY6OairvgXlG8weLFaBQcrPYeY2NjfPTRRzhx4gQcHR0RFRWF0NBQnD59Gqamppg4cSKmTZsGAJizZg22T5gAfPKJKGUUFgLGxqK/ppAQoHt3oKAA+OwzwMkJrz69xXV35kw0nju35KCDBsEoPBxo2BBtsrJw8PZthLm54ZfHj9E5PR2oVw/Gv/4KlLplxxhj+lRjCcPJyUltEJ7k5GS1TvMqWt+kSRNkZ2dDLpcDAJKSktQ723vGvHnzkJ2drZrin9Y7KE1MxEX8OV2x9+vXD7dv38batWsxZcoUhIaGIioqCjt27MCWLVvw8ccfAwBmzJyJC4MGASkpQFQUKCsLu955BwOuX0cvIyOs6d0bMU8764sHsC8wEJ5ffVX2gF27AufOiaSQmQls2QLcuSO69jh6VCQhxhgzFDVVlElISCBXV1d6/PgxSaVS8vb2psjISLVtvLy8KCIigoiIgoKCVM8TDB48mHbu3ElERKGhoTRz5kyNj6tqJXXjRpU/g0KhoJEjRxIAatq0KUVHR9O9e/eoX79+5XapYQPQP2fOJIVC8fwdy2REhw8TzZtHtH49UUpKlWNljDFdq7FKbwDYs2cPli9fDplMhunTpyMkJASDBw9GaGgoOnXqhBs3bmD69OnIzc2Fn58ffvjhB5ibmyM2NhaTJ09GSkoKXFxc8OOPP6rGFa+MrrsGkUql8Pf3x61bt2BmZga5XA6lUol69eohJCQEHh4eiIuLQ05ODl577TUEPG25xBhjL7saTRj6UB19ScXGxiIwMBBXr14FALzxxhtYv349WrZsqZP9M8aYIeKE8YKUSiXu3r0La2trg+5LizHGdMVE3wG8rIyMjNC+fXt9h8EYYzWmxlpJMcYYe7nV+hJG8R23nJwcPUfCGGP6Y21tXeaZNm3V+oSRnp4OAKoH+BhjrC5KSUlB48aNq7SPWp8wijvei4uLg42NjZ6jKSsnJwfOzs6Ij483yBEBDT0+wPBj5PiqhuOrmuL4zMzMqryvWp8wirsRsbGxMch/zGINGjTg+KrI0GPk+KqG46uaqt6OArjSmzHGmIY4YTDGGNOI8eLFixfrO4jqZmxsjD59+sDExDDvwHF8VWfoMXJ8VcPxVY2u4qv1T3ozxhjTDb4lxRhjTCOcMBhjjGmkViWMPXv2wNPTE+7u7vjyyy/LrL9+/To6deqENm3aYNq0aZDJZAYV37fffovmzZvD19cXvr6+qgGbalJubi68vb0RExNTZp2+z19l8en7/K1duxZeXl7w9vZGUFAQioqK1NbHxcUhICAA7dq1w7Bhw5Cbm2tQ8f3+++9o1KiR6vxNnTq1RuMDxABoHh4e8PT0xNq1a8us1/d3sLL49P0dLPbhhx9iypQpZZZX+Tuot5E4dCwhIYFcXFwoLS2NpFIp+fj40M1nxsP28vKic+fOEZEYoGnDhg0GFV9QUBAdOnSoxmJ61sWLF6lDhw5kampK0dHRZdbr8/xpEp8+z19kZCS1b9+epFIpKZVKmjBhAq1du1ZtmyFDhtCuXbuISAwENmfOHIOKLzQ0tMyymnTs2DHq1asXyWQyevLkCbVo0YLu3bunto0+v4OaxKfv/8NERGFhYdSoUSOaPHlymXVV/Q7WmoSxbds2mjp1qmo+NDSUFi5cqJqPiYkhNzc31XxERAQFBAQYTHxERN7e3jRw4EDy9vamiRMnUmZmZo3FR0Q0ZcoUioiIIFdX1zIXZH2fv8riI9Lv+bt//z6Fh4er5j/99FP64IMPVPNFRUVkbW1NRUVFREQUFxdHLi4uBhMfEdHQoUOpX79+5O3tTcOGDaP4+Pgai69Y8fmJiYkhZ2dntRgM4Tv4vPiI9P9/OD09nbp27Upr164tkzB08R2sNbekEhMT1cb6dnBwUBsjvLL1+o5PqVTC2dkZixYtwo0bN+Dk5IRZs2bVWHwA8MMPP6BXr17lrtP3+QOeH5++z5+7uzt69+4NQPTZ8+WXX2LYsGGq9WlpaWjQoAFMTU0B1Pz5qyw+ALCzs8Ps2bNx8+ZNDBkyBOPHj6+x+IqZmppiwYIF8PDwQL9+/eDo6KhaZwjfwefFp+/vIAC8/fbbWL58ebkjkuriO1hrEoZSqVR79J2IVN2CaLJe3/EZGRnh2LFj6NatGyQSCUJCQnD06NEai68y+j5/lTGU8xcTE4O+ffsiODgYffv2VS1/9vwB0Mv5qyg+ANi+fbsqicyYMQO3bt1CdnZ2jce4bNkypKWlISEhAZs3b1YtN5TvYEXx6fs7uGXLFjg7O6N///7lrtfFd9Bw/sdXkZOTk1q2TE5OVvs1Utl6fceXmpqKjRs3quYVCoVBPQSk7/NXGUM4f9evX0ePHj3wzjvvlKnsbNKkCbKzsyGXywEASUlJNX7+nhdfUVERli9frponIiiVyho9h3fu3MGtW7cAAJaWlhg5ciRu3rypWq/v72Bl8en7O7hv3z4cP34cvr6+WLhwIX7++We1Eo5OvoNVv2tmGBISEsjV1ZUeP35MUqmUvL29KTIyUm0bLy8vioiIICJRObVmzRqDiS8/P58aNWpEV65cISKihQsX0owZM2osvtIqqiPQ5/krrbz49H3+UlJSqGnTpnTw4MEKtxk8eDDt3LmTiEQd1syZM2sqPI3i8/DwoMOHDxMR0datW+n111+vqfCIiGj//v3k7+9PhYWFVFBQQP369aN9+/apbaPP72Bl8en7O1jaDz/8UG6ld1W/g7UmYRAR7d69mzw9Pcnd3Z1Wr15NRESDBg2iy5cvExHR9evXqVOnTtS2bVsaN24cFRQUGFR8J0+eJF9fX2rbti0NHz6csrKyajS+YqUvyIZ0/iqLT5/nb/78+VSvXj3q0KGDapo/fz5NmzaNfvrpJyISFaW9e/cmDw8PGjBgAGVkZBhUfNeuXaOuXbuSh4cH9enTh+Li4mosvmLz5s0jDw8Pat++PYWGhhKRYX0HK4vPUP4Pl04YuvwOctcgjDHGNFJr6jAYY4xVL04YjDHGNMIJgzHGmEY4YTDGGNMIJwzGGGMa4YTBGGNMI5wwGGOMaYQTBmOV2LdvH1555RV06NAB3t7eWL169QvtJzw8HH369NFtcIzVIMPprIgxA/To0SOEhITg6tWrsLe3h1QqRe/evdGuXTsMHz5c3+ExVqO4hMHYc6SlpUEmk+HJkycAgPr162P79u3w8vICAERERMDPzw/e3t4YNGgQMjIykJOTgzfffBPdu3eHm5sbpk2bhmc7VIiOjsbAgQPh5+eH7t274/z582WOffHiRXTp0gU+Pj7o0aMH7t+/X/0fmLHn4ITB2HN06NABo0aNQqtWrdClSxf8+9//hlwuR+vWrVFUVISxY8di69atuHXrFnr06IHvvvsOx44dQ4cOHXDhwgVERUXh7NmzuHr1qtp+J0+ejBUrVuDq1avYtWsXJkyYoOpFtNiaNWuwYMEC3Lx5E8HBwbh48WJNfnTGyuBbUoxVYuPGjQgJCcFvv/2GsLAw+Pv7Y/v27WjZsiWaNWsGX19fAMCCBQtU7zl//jzWrVuHu3fvIjU1FVKpVLVOKpXi4sWLCAoKUi0rKipCfHw83NzcVMuGDx+O4OBg/Pe//8WQIUMwdOjQGvi0jFWMSxiMPcexY8ewb98+ODs7Izg4GPv27cOGDRuwbds2mJiYqA1Ik5ubi9jYWKxfvx5z585FkyZNMGvWLHh6eqrdklIoFLCwsMD169dVU2RkJFxdXdWOPXnyZFy+fBl+fn744osv8M4779TY52asPJwwGHsOS0tLzJ8/H/Hx8QDEwELXrl2Dj48P2rZti9TUVNy5cwcAsG7dOqxfvx4nT57E22+/jfHjx6OwsBDXr1+HQqFQ7dPGxgbu7u7Yvn07AODcuXPo2LFjmVtSgwcPxr179/Duu+9i6dKlZW5rMVbTuHtzxiqxfft2fPbZZ5DJZCAivP766/jss89gbm6Oc+fOYc6cOSgsLISbmxt27NiBK1euIDg4GObm5mjYsCEsLS3x5ptvwt3dHYsXL0Z4eLgqEaSnp8PY2BgbN25Ez5491Y4bGRmJmTNngohgamqKNWvWqMblZkwfOGEwxhjTCN+SYowxphFOGIwxxjTCCYMxxphGOGEwxhjTCCcMxhhjGuGEwRhjTCOcMBhjjGmEEwZjjDGNcMJgjDGmEU4YjDHGNMIJgzHGmEb+H9gFhNEyI74ZAAAAAElFTkSuQmCC" ] }, "metadata": {} }, { "output_type": "stream", "name": "stdout", "text": [ ".178, q1 = 0.177\n", "i = 1680, ieqv = 1127\n", "q0 = 0.232, q1 = 0.231\n" ] } ], "execution_count": 4, "metadata": {} }, { "cell_type": "markdown", "source": [ "## Plotting Fig S13b" ], "metadata": {} }, { "cell_type": "code", "source": [ "function phase_dev(z)\n", " ez = z;\n", " ez = ez./abs.(ez);\n", " ez = exp(-1im*(angle(mean(ez)))).*ez;\n", " p = (angle.(ez));\n", " reshape(p, nx, ny)'\n", "end\n", "\n", "function plot_phase_dev(ax, p, title)\n", " c = ax[:pcolor](p, cmap=\"RdYlBu\", vmin=-pi, vmax=pi)\n", " ax[:set_title](title,fontweight=\"bold\")\n", " ax[:set_ylabel](\"y\")\n", " c\n", "end\n", "\n\n", "p0 = phase_dev(z0[ieqv1,:]);\n", "p1 = phase_dev(z1[i1,:]);\n", "\n", "fig, ax = subplots(nrows=2, ncols=1, sharex=true, figsize=[4, 2.75]);\n", "c1 = plot_phase_dev(ax[1], p0, \"Without twist\");\n", "c2 = plot_phase_dev(ax[2], p1, \"With twist\");\n", "ax[2][:set_xlabel](\"x\")\n", "tight_layout()\n", "subplots_adjust(right=0.82)\n", "cax = axes([0.85, 0.225, 0.025, 0.6]);\n", "cbar = colorbar(c1, cax=cax, ticks=[-pi, 0, pi]);\n", "cbar[:ax][:set_yticklabels]([L\"-$\\pi$\", \"0\", L\"$\\pi$\"]) \n", "cbar[:set_label](L\"$\\varphi_i$ - <$\\varphi$>\")\n", "savefig(\"phasedev_simulation40_TwistedVsNontwisted.pdf\", dpi=1200)" ], "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "PyPlot.Figure(PyObject <matplotlib.figure.Figure object at 0x631d189b0>)" ], "image/png": [ "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEOCAYAAAB1g0unAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJztnXlcVOX3xz93ZlhkGRBCk0Uww1wAFXPJBQXMVHINWwxzTVs002wh9yXJMi2lr5WaUm7lkltukEuiKSpqZm4puKMIyrAzy/394Q/UnjPDgMTIcN6v130pnznc+9wFDs89zzlHkmVZBsMwDMOYgcLSA2AYhmGqDuw0GIZhGLNhp8EwDMOYDTsNhmEYxmzYaTAMwzBmw06DYRiGMRt2GgzDMIzZsNNgGIZhzIadBvPIkJeXh0uXLj1Sx5RlGWfOnKmUsZw+fbpSjsMwDwM7DeahCQgIgCRJSElJAQAYDAa4u7tDkiQMHTq0xG7atGmQJAnz5s3D0qVLIUkSpkyZAgDYtWsXGjRogJ07dwIAUlNTIUkSOnXq9J+N+9/H/DdXrlxBmzZtEBMTU+Z9T5kyBZIkYenSpaXaZmdn47nnnsMbb7xR5uMwTGXDToN5aEJDQwEA+/btAwAcPHgQmZmZAID4+PgSu8TExBL74OBgTJ8+HWFhYQCAPXv24OrVq5U57FKP+c8//yApKalc+w4LC8P06dMRHBxcqm1GRgZ27NhRruMwTKUjM8xDsnbtWhmAPGLECFmWZXnSpEkyALlBgwYyAPnMmTOyTqeTnZ2dZQ8PD9lgMMhLliyRAciTJ08u+X/xNnnyZDklJUUGILdv314eO3asrFarZT8/P3n+/Pklx719+7Y8fPhw2cPDQ3ZxcZHDw8Pl5OTkks99fX3l+x/xyZMnywDkJUuWkMe8n+LjF28dO3aUX3zxRVmSJPn69euyLMtynz59ZADymjVrZFmW5VmzZskA5LVr1z5wLFmW5c2bN8vNmjWTa9SoIbu5ucn9+vWTMzMzZVmWHziOr69vRd8ehqlQeKbBPDQdO3aEJEklM42tW7dCrVZj4sSJAICEhAQcP34c2dnZCA0NhSRJD3x/cHBwyWylb9++JbMP4O7s5fDhwxg4cCCuXr2KMWPGIC0tDQDQq1cvfPfdd2jTpg0GDx6MgwcPokOHDjh//nypYzZ1TACoWbMmhgwZAgBo3rw5hg4dit69e0OWZWzbtg0GgwG7d+8GcPc1FwBs2bIFNWrUwHPPPffAvvLz8xEZGYnMzEyMHTsWISEhWL16NcaOHQsAeO+99wAAfn5+GDduXKljZxhLwk6DeWjc3d0RFBSEkydP4ty5czhy5Ag6d+6M7t27Q6FQICEhoeTV1L9/OQNAUFAQQkJCAAA9evQo+T8AeHl5IT4+HvPmzcPzzz8PnU6H8+fP48CBA/j999/RuXNnbNy4EXPnzsU333yD3NxczJs3r9QxmzomALi4uGDAgAEltgMGDEBERARsbW2xbds2JCcn4/bt23B1dcXu3buh0Wiwf/9+dOnSBY6Ojg/sS6FQQKlUQqlUwsvLCzNmzMCZM2ewcOFCAMDIkSMBAL6+viX/Z5hHFXYaTIUQGhoKWZYxZcoUGAwGdO3aFW5ubmjZsiV27dqFPXv2lNiVhXr16sHW1hYAoFarAQBarRapqakAgBYtWpTYFscPzp49S+5Lr9eX6dj/Rq1Wo1OnToiPj8eOHTugVCrx3nvv4eTJk1i2bBm0Wi369OkjfJ+dnR02b94MT09PjBo1CgEBAejcuTPWrVv3UONhGEvAToOpEIqdwapVqwAAXbt2Lfn3zp072LRpE7y8vNCgQQPy+4tfWcn/au+iUNCPqJ+fHwDg6NGjJVrx/319fQEAKpUKAJCbmwsAJa+1Sjumqc979+6NzMxMzJ8/H8HBwejXrx8AYPr06VCpVOjRo4ewnzt37iAvLw8zZ85EZmYmtm/fjqKiIgwcOBA6na7UcTDMowQ7DaZCCAkJgUKhgMFgQJMmTeDj4wPgnvPQarXkq6linJ2dAQDLli3DL7/8UurxWrdujTZt2mDHjh3o3bs3xo4dizfeeAMODg549913AQD169cHAIwYMQKTJk3C8uXLy3TM4s/37duHuXPnArgbR5EkCWlpaQgPD8dTTz0FHx8fpKWlISQkBG5ubsJ+cnNzERkZiYiICEybNg1btmxBZmYmPD09oVKpSo7z999/Y9KkSaWeO8NYEnYaTIXg6uqK5s2bA7jnKACgVatWJb9ITTmNvn37IiAgAPv27cORI0dKPZ4kSfj1118xYsQI/PHHH/j+++/Rpk0bHDhwAA0bNgQAfP755wgMDMSaNWtw6NAhzJgxo0zHbNq0KSIiInD16lVs2LABAODp6YlWrVo9cD6dO3cGAPLVFHA3LrN9+3Y0a9YM3377LeLi4hAWFoZNmzYBANzc3DBs2DDk5eVh2bJlPONgHmkkmZ9QhmEYxkx4psEwDMOYDTsNhmEYxmzYaTAMwzBmw06DYRiGMRt2GgzDMIzZVGmnIcsyNBoNL1FkGIapJFSWHsDDkJ2dDRcXF9y5uAhqtUOJflruRdo3TBNrEuX7R5C2DgXnSH2X/8ek/t24b0l9RZe9gpb+5Ouk7ZCYY6Tepr0fqY8ONZD6c/0OCdrYrZ+QtjHB75J6l486kPqE3WNIPfTPlwTtwOiDpK3UiM4KNxw7SeqKDu1JPWfqCkHrW4MeX9wM+nw8VrxJ6hf+R98Lv1cbCdrheX+Ttm33jyb1o7YDSN3HOZvUc7Q1Bc1g5O+kAh1dKsVWSf99+Fd6DqmfSr0taIPbPkbapufbkfr523mkHreCvraz3hHvc66WPh9j1+qxk9+QOuzpMY5K7kLqsQOepvfDVO2ZBsMwDFO5sNNgGIZhzIadBsMwDGM27DQYhmEYs2GnwTAMw5hNlS5YqNFo4OLigqefWwCVTY0Sfc5fMaR94Lm1gvbtPnpVxduJ75G6ffQ7pJ6l8yV13dBBglazjz9pm7/7Mqnn3aRXoZz9I5PU2x7+SNz3Fz+RtoVG9t2/trgPAHj11WakHrluuKD1yX+LtP1xchCp5+ro1Tm1YujqsR82ni5or0x4lbRt+lI9Uj+5NoXUm33YnNQPTD0qaKs/XU5YAvP60PcTNVxIOX/qF6T+Y8T/BE2lov/eq/98Z1I/s34Hqb+29W1Sz/1QPKaT6gZpO2WzPamHNK1D6k+4OpC6j9M/grbksDNpGzc+gdTrhj9B6vPfpZ9braEGqdd1onWGZxoMwzBMGWCnwTAMw5gNOw2GYRjGbNhpMAzDMGZjFYHwtIxEqNVOJXqHTn+Q9iO/7iFoPy46TNr+9DldRuD5F+JJfc4iOljbbHY/QVN8Nou0zX6VDkq6vUCX3RhyYxipj48Tg9KpaxJJ22fxI6nfqEUHlGsdp4O1N5uKCweMBRm9to8k9Z8a0gsY2o3uRuo+K8WSIfIx+n62/iSQ1Hc1WUXqKbuvkrq9o1LQvLvRQfZO++lnYp0dXepC+fNWUp+y6oKgRYY/Sdo+NZwOhL/Zir62G6bSgWbFXzsFbZ/7KNK2vZtYKgcAYEMvMknOfIbUj125I2gr4pLpfRtBYUP/HTz6LfqYnVcNJXW76PVlOm51gmcaDMMwjNmw02AYhmHMhp0GwzAMYzbsNBiGYRizqdL9NIo5mekHJ6265OuOdIsIRDwl+kjv9+k+C6kaG1L/+SexbwQApDxFZxDfaCAGA0+5v0za7o0TM9YBIHn/JVJfOLEFqXu5iUF8f90S0vb6WDpT/AWDK6lHjR9B6s+GhAhanf30+RjrbXDsbDqpv7JhMqlv8/5Q0KY8E03aHnyPXhyR+yu9DiQlldabPWMraPZT3idtd46ZQeoX4uleEFduSKRe10e8F528z5K2ch960UT+XwWkfvxWO1JvsvkzQWv35hbSVm9HV0MIeeE8qSd+SAflk1VvCNr8yXRg392evobRceKiAQAI8HAidd3NXFKnn1AG4JkGwzAMUwasYqbBMAxjSQoKClBUVFSqnSzLkKQHZ5R2dnaws6s6cxueaTAMwzwEBQUFcFbXhouLS6mbt7e3oMXE0K/rAGD27Nnw8/NDQEAAHnvsMfTu3bsSz4yGZxoMwzAPQVFREXRaDQKafwKlkq74CwB6fQH+Ojoely9fhlp9LwZrbJaRkZGBAQMG4Ny5cxg0aBBOnDiB4cPFxN3Kxiqcxu6TN2DveC+glZ9LTxNXJYvBQDsbLWmbnUfv492bdHDT+9uOpD7XWQySJmw7R9puff46qeN5Oihv2EMHfaEWM7H19eiAZ5159CPg9JUbqb95RwyQAsCzbcS/lmY2pDOiWy7sSurOKjHIDABX5TBSP7xqo6DVO5FG2uY815bUb0ynx2iMlx3FLPRfh0wibV2jnyf1urPoYwZk0AsHcnzEvy6VmiP0ALvSmc+eBfT99FPfInXFhx8L2paL9UnbGyn5pJ44VcwqB4C0+nTbgZObxQUffQJIU9zKp8vovxrRkNQVkfR16XCbrqpQtjz0u6hsa0CpMl5SXdLdfS2lVqsfcBrGcHd3x3fffYewsDCsXLkS48aNK8eoKh5+PcUwDFMBSDbKUreykJGRgYULF6J79+44dOgQioqKUFBAr4KrTNhpMAzDVAAKG0WpW1kYOXIkXn75ZTg7OyMjIwOLFy+Gvb3x11+VhVW8nmIYhrE4CsXdzdTnZWDlypUl/z97ls7LsQTsNBiGYSoASWV6NmGwkhc7VuE0hrS1gVp9L4i63yOKtOuUuU7Q/rrlQ9pe8W1J6sPmfk/qi9y/I/WQMWIwdOzvY0lbvYKO+unmzCb1onc+IfW09pGC5pt6m7TV3qAzYr//mw7KS6MGkHpCMzGb+8Inx+h9ZCwg9fG3lpH6b/V+JvVwRzGD+vE1dOl6x3UTSP0VG7rct103umR43VZegvZTxx9I278O0BnuzynpbPsDJ+nFCjeui1nO7t3oxQQTx9FZ24mrDaReMJ7u437hfTEo3z1vLmmbu/g3Utc1oYPVdRrR5eu/8BTvnXYOvWjEbYTYcgAAdlymFzykbaef80/dvyJ1gL4uppCUEiQlndUPAJLB+GdVCatwGgzDMJZGslGYDHZLVjLTqPSzyM7ORmBgIFJTUwEACQkJCAoKgr+/P8aPH48q3BOKYZhqjKSQSt2sgUp1GgcPHkSHDh1w5swZAEB+fj4GDx6MX375BadOncLhw4exefPmyhwSwzBMhVDRq6ceVSr1LL755hvMnz8fnp6eAICkpCT4+/ujfv36UKlUiIqKwpo1a4x+f2FhITQazQMbwzDMo4CkkEriGuRmJTONSo1pLFnyYHnua9eulTgQAKhTpw6uXzeSFQ0gJiYGU6dOFfTzd2rCUX8vw3JOf7qWy6zX/hS0bY+NJm3bFNB9nJ/T0Zm1OgUdUG3hLGaIxgfSfbabXDxE6pdi/yb1k53ocs8vJv4iaLe0tUjbWqvpft3ukz8ldVzbTcqFizcJWtQBOpN96VV60UCDhS+Ser0GdKZ4zGsLBe3bCxNJW4WfN6nbe9GZuXtn0s+hfELMctY0G0/a3mjQhNR959Hn+cwH9DP3xXbxle2Rf+hM7gmf0wHyvzPp9f3vaOhS9/E7xUBw6K8RpO227+ge7op1dJD5VHZ7Um8UKC7WKFpOZ77/4jGN1N+Ma0WPZRc99tRJCaReHiSVEpLKREzDULbkvkcVi86XDAbDAxUfZVmGwsRa5ujoaGRlZZVsly9froxhMgzDlIrJWUYpK6uqEhZdPeXt7f3AzCItLe2Bmce/qWolhBmGqT6UVipEknmm8dC0bt0ap0+fxtmzZ6HX67Fs2TJ060ZPdRmGYR5lFKpSAuEq6wiEW3SmYW9vj7i4OPTr1w/5+fmIiIhAZKSYmMYwDPOoU9qyWg6EPwTFORoAEB4ejuPHjz/U/lq6H4Ja7VjydUL//aRdz4RnBe3m+/QS36wMHanbGLnxa5Po+MoEtZhZ/FF9Ovger8oi9TYp35L646F06e2MjQcFzXcv3Tg9aw89bmclXQJdrlub1O1e7yVo375B/wGQ+TS9UGHU3z1IvcNCOjv36/ViEPf2a1+TttLrdG/3HfXoItiSH521T5FnZHHEtCX0woZFH9Pl9V0V9L2Y0VPM5j59uylpO3yYWPUAANbIsaReP2IeqevTxXLnU6bS/brt/vyS1HP70L3T/zxH9/duqM4UNJtYetHISzGnSb3I2Z/UlRniIhgAcHqc7h1fHhQ2SihMvJ5SWEkgnDPCGYZhKgCFQoLCxGzC1GdVCXYaDMMwFYDCRoLSVMFCrj3FMAzDFFNdZhplCufv2rXrvxoHwzBMlUalVEClMrEprWP1VJnOYs6cOWjQoAGmTp36QDCbYRimuqNQKErdrIEyvZ7atGkTbty4geXLl6Nfv35Qq9UYPHgwIiMjLdqGsNvbd6CyLSr5euykD0m79xd3EDTddnpFw6eR9Cqcz95sTeoTHBaRunb/eUELfZ/u93E1h16FozfQZTQG1f2Y1GNyCgXtz6emk7Z1Yuj71vImXQIiPvRHUn82Xixp8k7sVtL2x6ccSN3NjdZ7rRtO6vnvi/0d0nNrkrbzO9O9IOZeo3uS/PEkXRYm6UexX0WUN70a6Ms36ZU8XV7bTepjp9Grk1p7iuVYjl6j666N+4wuI5Ik0fq85UNIXTVQHIvvgI6kLf73Cikfu0mXbvnyg/X0WGzEZ2j3Gi1pKyfuJvXDb4tlhgDA8QjdwyPonVOkXh5UNgqoTMQ0ZL11OI0yn0Xt2rXRq1cv9OjRAykpKfj+++8RFBSEVatW/RfjYxiGqRIoVYpSN2ugTGexYMECtG3bFhEREbC1tUViYiJ27tyJffv24d136TwAhmGY6oD0/4FwY1u1TO5LSkrCrFmz0KHDg695PDw8EBtLJw8xDMNUB1Qq06+nDDrrmGmUyWn8u7T5/XD5D4ZhqjOlBburZSD8UWXImPZwcLpXrqOL7zXSLvNskqB5/v05abvS6QCp6x3owPH59+mg7/pPxaBfW28X0jbgEF124dWTdAmMPV/T/SrOhLQR931wA2mbnl+X1HO/pZdXu/1NBxSL3M8IWtxXgaQtJLoo5ZTtdG8PaQAdILZNFvtpuDZ5mrT96IXupG5z+AlSvz6NDpC+86TYT+OlL+uTtrMT6FIkc5f/TurXnqDH3qvlOEEb9RXdHyL4cbo/yKy1dBmNrT50/5HCX8UA9Nett5G2cKd7tWzaf4nU98+ky6XEq8VyMel96AB+/o/0NWy7gy6LUvT9AFJPfJX+QziEVE1TWtzCWmIaVuE0GIZhLI1CCShM9MxQWEfpKXYaDMMwFUFxEp8xDDzTYBiGYYpRSKWUEZGq4eophmEYhkZho4TSVGl0E59VJazCaezYdR629vf6aTw9+A3Sbkj9CYI24mO6V0Ovea+S+u8fvE7qz40KJvVxdTcKWsuBjoQl0O5xurfDik/8SF3v2J7UazUTA5Pr/qaPuf8Q3cvE/4VvSD3hi72k/uHIZwQtVPE9afuzpi+pz11MZxwPr0cHwgfXEPd/KHg8adt09E+kDj86gzxl26+k/nSfeEEbt7gRaVv3TTpj3+kdOig/ezLdN6XWnQJB62csSz6aXvr+9hd0IPipY0tJ/WZBE0G7ZaB7dXg5HqX37UtfW81TL5N6F4W4yOK2ew3SVq/Ukzo0dHZ+/rt0X472B+jeJvCaTesmKO31lJ5fTzEMwzDFVJcqt+w0GIZhKgCV0nQlW72VVLllp8EwDFMBKBUSlCZmE6Y+q0qw02AYhqkAlArTMw2dlWSES7Isy5YeRHnRaDRwcXHBvpRrcHK+lwl7qR4dlI7YKwa35Rs36Z2raH969TM6E1WxdjepD5mWKGgbZ9IZtGldhpH6jRV08LnJJ31I3b6dlzi+hnTW8hp7etFAvwYnST1HT489PV/c/63gZqTtla30+fR2oYPPyKTvUVY9sXSNSxq9j+w6z5G68z90cBcurrSeKwZadQl0lnz7X7qQ+p6t9POZp6MDx4Yh4nObefY2aXvlMh0gtk0WqyEAwLwf6cUXHwwWs9Nb3KDL5R/0eIfUn054m9Rv9p1P6p6S+LMl36Kzx/PnbyL126cySN3Wka6esOF9eoHEsBY+pE5R/Hto/LrDsHcUy7sXU5Cbg0/6Po2srCyo1XTmflWAZxoMwzAVgEolQaUy/grK1GdVCXYaDMMwFYBSkqA0kcBn6rOqBDsNhmGYCuDuTMN43IJnGgzDMEwJCkkyWSqEy4g8QqTczoeD7t6p9D4fTdpJzo+JoscV0jbv87WkfudKHqn7jetN6gtO3hK0i210pK3/1o9I3WvjCFJXTuhP6pkuzwracV86q3rXLLpMuY9LC3osznQpBHd7sQz2ukWbadvcIlKX/6ID5LKWDu4WjBfP33XlFNJ2/Sk6QNnpidGkbuyaK5o2FDTd63Tm9266eADs0g+Repdx9Bh3D20paN8Z6EoGJ0+kkXr/QvqZu7grldSDA8UAcYwtXeo96/xFUm/dhF58YYxpexoI2qRQ+ldUjdfDSX3IevFaAcC8kXTWftTn9OITtKAD7aZQlpIRzqXRGYZhmBJsFArYVIMlt+w0GIZhKgAuI8IwDMOYTWkFC019VpVgp8EwDFMBcCC8ChG+eBjUdvdOZXH/xaTdk7WdBS3kAl0auUYPsTQ0AOi20Rmq49vTvca/aCbqSv/HSdvMMd+RunNL2l7n3pzUd5wRs19f+Jju1/3FWTqDFnQCNbyvfE1/UFvMoH2mAV0CvK3bPlKXa9IZ5ArPp0h9/2ujBK33kT2kbdc5U0n9qwGLSP3FGXQGtf1+sXx5Ta2GtHX8OIrUc7UGUvdqPonUt9YT+3i3at2WtO18gs5O91PTCzgObvUj9bd+CBC0WC+67PrcmnRGOBwcSLnO7ZWk3vNpsXy73jaTtC343w5SHxdNVzjwyF5N6qsixT7zAPAKqZpGpVLAxsRsQsszDYZhGKYYnmkwDMMwZsNlRBiGYRizUaCUmQbYaTAMwzD/j0ohQWViWa2pz6oSVlEa/dS1y3C+r9RwkcGWtFf1E4OH6o0/k7bq82tIXW7YjtSla3+R+rq8FwQtPjGVtF3Qmc4UTmxLl5Juf4DOZr7kMkTQzt+mA6EdvM6ReswOunTzBFu6d/irR8Uy7QtTppG2BbN/IHX3i8tJfdiuDqS+MGi9oGn/oM/HpjWdnVzQ5jVSx4QPSFmyFzPiZ7WmF0G88D5duj4w6VNSz4+hg7L7Xv9R0DruoMuOqzrSZdclL39SL/pW3DcA/P6COJaQjXSQOeX7E6R+e8tBUm/jQevPvi/2Qv8p8zPS9sB6ulx+tyN07/SPTtBl6j9td4TUJY9BpE5R/HtozZ8pcHAWF9sUk5edjcigelwanWEYhgEUkulKtlYy0WCnwTAMUxFUl9dT7DQYhmEqAF5yyzAMw5hNdZlpWEcg/LnmcLa5F6DsnUMHw5J+EUtPywfoctzZYXQZaHV6PD0YGztaTzkvSC/tpsuUx+XMJvV2OyJI/cgPOaQup6QK2vlnviBtX+lBB0K3x9Ml0/uNpoP1/V8XS1KH+nuQtrcLtKTeIv97Updc6Yz4S8qeglZX9RtpK5+he2FrGtHl5X84TJeA79dcDHTWvkX3mf5NpvOKC/X0j9wXs+hs9p1zxb/tVl9qQ9pGYimpSz5i2XEAkG9fJ/URRB/zb56kz/P2M2NIvVBPB4XtlGKfdQCwUeQLmv0Cuuz85Z/PkLp3HzrgL+fSz9zlXy+Quv/Bk6ROUfx7aMeZS3B0Nh7gzs3WoMtTdTkQzjAMwwBKhQIqE+XPlVZSGv2ROIsVK1agcePG8Pf3R2wsXd+GYRjmUUYhlb5ZAxafaVy9ehXR0dFITk6Gvb092rZti44dOyIwkC6wxzAM8yhSXWIaFncaCQkJCA8Ph7u7OwAgMjISa9asIZ1GYWEhCgsLS77OysoCAOToHmwHqteJ70YBQKMRJ1aykdaj2Rr6vSuy6X3Dhq5citxCQdIW5NLjK6Tfu+r1Rs4nR0yGAuhzytHQlViNXStj568ropME83NE+2wNHefJMXKemnz6fCQFfcxspXhOGhVtKxu5Vhoj55mfS8c0sonLWMPIM5Er09e8iO5ea/TaajTij2kecb0BQAMj11Bj5LoYGXtRvviMaohnGTD+rBiL3RQp6VicSiGOvchI/CtbR19EjRF72YieozeyH40Gzs7OkMqw4slGkmBjwjHYWMnqKYsHwmNiYpCbm4sZM+6WKF+0aBGSkpLw3XdimfApU6Zg6lS6xDXDMExFYm7AujgQnpR6HU4m7HM0GrTyq8OB8IfFYDA84M1lWYbCSMAoOjoaY8feW9V0584d+Pr64tKlS3BxcfnPx2opNBoNfHx8cPny5Sr9sJVGdTjP6nCOgHWcp7OJkiAU/HqqkvD29sbevfeWvaalpcHT05O0tbOzg52d+MrDxcWlyj6YZUGtVvN5WgnV4RyB6nOeACCVktxXllddjzIWXz3VuXNnJCQk4ObNm8jNzcXq1avRtWtXSw+LYRimTBTPNExtlmL06NF47733KmRfFncaXl5emDlzJkJDQ9G8eXNERUWhVatWlh4WwzBMmZBgKHWzBOnp6dixYwe2bduGW7duPfT+LP56CgD69++P/v3pzFxT2NnZYfLkyeQrK2uCz9N6qA7nCFSf87wfpaSFUqJXaRV/bgm+/fZbDBkyBAqFAgsWLMDEiWLP+bJg8dVTDMMwVZni1VOnr198oK/Pv8nWaNCwjm+lrp7S6XRo2LAhDh06BEmS0LJlS5w6dQoqVfnnCxZ/PcUwDGMNKCQ9FJLOxGYkQec/5Oeff0ZISAhq1qwJV1dXhIWFYeXKlQ+1z0fi9RTDMExVRwE9FDDuGEx99l/h4+ODKVOmlHw9YcIEXLhAF2k0F3YaDMMwFUDxjMLU55VNhw53WyXv2rULCQkJCAoKQmRk5EPtk19PMQzDVACSpIXCxCZZKBAOANu2bYOnpye2bNmCTp06IT09vdz7YqfBMAxTASgkQ6mbpahduzbCwsIQFxeH1atXIy4urtz74tdTDMMwFUBxINx9Yd0LAAAgAElEQVTU55YiKioKs2fPRmJiIgIDA+Hm5obMzEy4ubmVeV/sNBiGYSoACXpIJoLdpj77r4mPj8fMmTOhVCqRlJSEuLg49OzZE0qlEnv20B0jjcFOg2EYpgJQSjooTcw0TH32X9OmTRuEhYWhb9++aNq0KZydnZGYmFiu2AbHNBiGYSqAR7WMCADUr18fGzZsQE5ODhYtWoSOHTsCADw8PMq8L55pMAzDVADFq6RMfV7ZxMTEwNPTEwMHDkTNmjXh6+sLAOjevXu598kzDYZhmAqgoldPrVixAo0bN4a/vz9iY2PLNabIyEjMnTu35Osvv/wSL730Urn2VQzPNJgqR15eHm7duoW6deuWex+nT59Gw4YNK3BUlj0OY3kqcvXU1atXER0djeTkZNjb26Nt27bo2LEj2QbbFP7+/vD29sbvv/8OhUKB2rVrw9/fv0z7+Dc802AqjYCAAEiShJSUFAB3uza6u7tDkiQMHTq0xG7atGmQJAnz5s3D0qVLIUlSSSmEXbt2oUGDBti5cycAIDU1FZIkoVOnTmaP45VXXinX9Hz37t2QJAmDBg0yy/6DDz4o8w85U3Uxldh3/6srjUbzwFZYKPZeT0hIQHh4ONzd3eHo6IjIyEisWbOmXOMaPXo0YmNjERsbi3ffffehzhFgp8FUIqGhoQCAffv2AQAOHjyIzMxMAHeXBBaTmJhYYh8cHIzp06cjLCwMALBnzx5cvXr1ocaxatUqGAxlD0rWq1cP06dPxwsvvGCW/c8//wydznIrZpjKRZINpW7A3XpQLi4uJVtMTIywr2vXrj3QwbROnTq4fv16ucb17LPP4vTp0zhz5gy6dOlSvpO7D3YaTKVR7DSKncK2bdsAAA0aNMDly5dx9uxZ6PV6HDhwAB4eHggICEBycjImTpyInTt3YunSpZg6dSoAYPDgwQ8UYtPr9Xjvvffg4uKCevXqGX0H7OfnBwC4ePEiJEnCggULIEkSfvrpJwDAvHnzIEkSRo0aBQBISkqCJEl45513kJKSgokTJ2Lt2rUAUPJD6OrqCmdnZ7Rv3x5Hjx4FAHTq1AkXL14EcLfNZ2pqagVdReaRxaArfQNw+fJlZGVllWzR0dHirgyGB9rDyrIMhaL8v66XLFmCxYsXl/v774edBlNpdOzYEZIklcw0tm7dCrVaXdIUJiEhAcePH0d2djZCQ0OFnsrBwcEljqdv374lsw/g7uzl8OHDGDhwIK5evYoxY8YgLS1NGMO4ceMAAK6urpg+fTp69eoFSZKwdetWAMBvv/0G4O5rMADYsmULAKBPnz7CvkaMGIE9e/Zg6NChGDhwIJKSkhAZGQlZljF06FC4uroCAKZPn46aNWuW86oxVQZZLn3Dvb7pxRvVqMrb2/uBmUVaWtoDM4+y0qJFCwQHB5f7+++HnQZTabi7uyMoKAgnT57EuXPncOTIEXTu3Bndu3eHQqFAQkJCySzkfodQTFBQEEJCQgAAPXr0KPk/cLdtcHx8PObNm4fnn38eOp0O58+fF/YxcuRIAICLiwsmTJgAT09PtGzZEtu3b4dOp8OePXvg6uqKv//+G+np6diyZQvc3d1LqoXej42NDRQKBVxdXdG/f3+cPHkSJ06cgCRJGDBgAFxcXADcLUdd/H/GitHrAb3OxGZ+ILxz585ISEjAzZs3kZubi9WrV6Nr167/4eDNh50GU6mEhoZClmVMmTIFBoMBXbt2hZubG1q2bIldu3aVlDQonlGYS7169WBrawsAJV3RtFrz1sX37t0baWlpWLRoEbKysvDhhx9ClmWsXr0aR44cQY8ePchOZ4sXL0b37t3x6aefol27dmjRogU++eSTMo2bsSJkQ+mbmXh5eWHmzJkIDQ1F8+bNERUVhVatWv2HgzcfdhpMpVLsDFatWgUAJX89de3aFXfu3MGmTZvg5eWFBg0akN9f/Mrq312Ky/q+9/7vL371NHXqVCiVSrz11luoU6cOpk+fDoPBQL6a0uv1uHDhAl555RXcvn0bBw8eRHBwMGbOnFny+s3YWBkrxcyYhrkUz17Pnj2LDz74oEKGuHnz5ofeBzsNplIJCQmBQqGAwWBAkyZN4OPjA+Ce89BqteSrqWKcnZ0BAMuWLcMvv/xSrjE4OzsjLS0NY8aMgVarRcOGDfHUU08hLS0NLVu2hFqtRnh4ONLS0uDo6EiuOFEqlRg9ejT69euH4cOHY8OGDTh37hxUKhXq1KnzwFhHjRqFa9eulWusTBXCYCh9szCTJk166H2w02AqFVdXVzRv3hwAHnhH26pVq5IyzaacRt++fREQEIB9+/bhyJEj5RrDe++9Bzs7O6xcuRK3b98GcPcV1f3HfvbZZ0vGaG9vT+5n8+bNeOGFF7B582Z8+eWXqF27NtauXYsnnngCAPDOO++gZs2aWLFixUM1vWGqCAZ96ZuFqYhZryTz3JlhGKbcaDQauLi4IOvS91CrHUzY5cGl7hBkZWWVxN0qm8mTJ5csWy8vXEaEYRimApD1Osh643ELU59VFg/rMAB2GgzDMBWDbDD9CqoMq6ceZdhpMAzDVASlLatlp8EwDMOUUJzEZ+pzK4BXTzEMw1QEFZjcV9EUJ9MOGTIECxcuxIkTJ/DHH3+Ua19V2mnIsgyNRsPJUwzDWJ5HeMltx44dMXHiRNSvXx+NGzdGfHw81q9fX659VenXU9nZ2XBxccGOM5fg6HxvCVubox+S9plhEwWtpt1F0vaP601Ivb36N1J/eYEbqfvUF/XPOh4nbYtcG5G6zd4VpD7gaG9S//qkmMBz6+Qt0nZgHfpaJU5OIfXCzXRuhPaDTwXtUNrjpG2oajWpH2g7h9TffYoe4/KsLwTNLuEgaWs/9FlSz0vPI/WYqO9IffCM1wRt4YdLSdvnOj5B6qvXnyT1sFDaPsjHVdCu54g9GADAxY7+kb6dT78a+W1/KqnX9xMLLPZt4UPaqhQSqXs60M/5ujO+pP5SvUOCZjiwk7RVtO5E6m0iM0n9986bSL1o1DRSd1LRP/8mKS2Bz4LJfdu3b4ePjw+SkpKwbds2rFu3rlz9wYEqPtNgGIZ5ZDDoSykjYrmZRq1atRAWFoa4uDisXr0acXFx5d5XlZ5pMAzDPDI8wjONqKgozJ49G4mJiQgMDISbmxsyMzNLqjCUBXYaDMMwFYFeB5jq1GjB1VPx8fGYOXMmlEolkpKSEBcXh549e0KpVJZUljYXdhoMwzAVgU5/dzP1uYVo06YNwsLC0LdvXzRt2hTOzs5ITEwsV000jmkwDMNUBI9wldv69etjw4YNyMnJwcKFC9GxY0cAKFcw3CpmGo/VsIWTg23J14MvRJF2Pf1tBK2tV0PStr3TDlK/rggn9S6d6VU4J86Jq5ZeX+tP2jZ6SlwlAwBj/7/E9r+xryGeDwC4fvOxoH2+1Yu0ddh1gdTh5UfKdlF0BzpprnjMTkF1SNt9QTGkfnpNN1Jv+Ae9wm3w/vGCtrhTS9K2wMgKnyOH6VcGHxpeJ/XoN74RtHkJY0jbAefF1XoAsKXpKlJPeimJ1D/qNF3QnDzpZ2LTDEdSfzGGbki1ZmQGqctXxVVLknNr0nbnlWakLiGQ1EN880ndcGyfoOW1H0raHrvpTeqJL75N6oqa9Lv7F2fSJevXTyrH6ildKa+nTH1WCdSsWRMTJkx46P1YhdNgGIaxOAa5lEC4deSTsdNgGIapCB7hmEZFwk6DYRimIpBLiVtwwUKGYRimmLv9NJQmP7cGrMJp2CoBu/vu1dJn4km7dG8xAJ2vpwOHP6S2o/dxmy5T4FGT7tg1t9t5QbumpIPpabn07diS8w6pL3rjL1JHofhw9nuGLt3Qq1Vdeh95S0n5cOcFpK4ihv7P+m9J2xcuzCD14yo6iFn/ycdIffqGUYLm0bUeaRuRSQe2vzGIAXwA+GN3AakPOzlC0IqepoPSNnb0L5BrP9D3bdzTdOD87aVi8NJNrPIBAFjxym5Sn7OrO6lfHU2v0a/pLy4+uJz1JGkb5rWf1DV6uuyIrSKX1HNaDBa0v2/RpWhOX88ida++i0jd04G+5kFK4532yswjnNxXkViF02AYhrE4HNNgGIZhzEanL2XJLTsNhmEYphh+PcUwDMOYjV4H6EwU2eBA+KODt9MRqJ3uBbRjCweRdiMLxSzX2zWeIW3DiT4YALD1ND3FfO1JOpv3gEbs49Ci1mnSNqWR2KsBAEL++YXUC/VqUp+zV8zEfivkJmmr3k33sJBtbUndGPk7xT4WkTW2kLZ/9qF7Gww90Z8ey3Q6QPxGr/mCdnrzOdK2/TA6QF7jvD2pt25HZ1D3d3hX0Pa020ja/nTjc1LXGMnkNxTQv1TmdY8WxxfVlLTVHrlC6idH/kjq7W/S5xlRN03Q3OzpBQnXC5qTevINOpktwoMOSidniwtEfNT0YoK1F2+Teis/+uf27ZX0tQ1vX/Yqr0YxyKYT+Di5j2EYhilBV8pMw8JlRCoKdhoMwzAVAcc0GIZhGHORtQbIWuOOwdRnVQl2GgzDMBWBXr67mfrcCrAOp3HpBOB8L6D5UnO63HmGFCJo287R7yBr2NEZwcF16VRcfY1apL5zvxhQvP1kfdp27s+knnutNqlnF9HvSIe3F4ObroqTpG3RaXF8AKBqQJ/P0wlvkvqb284IWmun7aTtzm9/JXVDQASp7/6Otrc7I5adn3NqFmnb7He6lPZf5+iS9tev0z/gHuPE/aSsFs8dAE6v2Uvq127RGdEe286SuoEIoGpu0+NeEkWX+tb+vI7Uf8qlF0Lsvi6WmA+5Ql/bJD8xUA8A3Qv+R+pndKNJ3VYpPs/eGd+Tts4O4gITACjQ0X/Nt21J3/9uT9LXsTzIOtn0TEPHToNhGIYpRm+4u5n63Apgp8EwDFMByFoDZBXHNBiGYRgzYKfBMAzDmA/306g6bNRGwqHoXnnqVga63Pm5zCJB69uQzqA9e4fOIPZ0pIOYP/5Jlx5/qZW7oKXnieMAgG4t6VLStR3p7OxG++kAZEG9kYImX6ODtTbPPk3qqE2PRXIWzwcARs0Vs9n79J1H2s7qTPcOnzyILrv+6fg+9DEHBQjahVr0wgbN5WxSv2Eka/n5BXSv8ZBdYln32050hvf0V1eT+hO96IUaq7Jnk/qWWLFM+f+G0UFp2NYg5TVt55J6/1v0MWdcGSZoV7zpEv2vZol90wFglTyI1Ls7XCV1jxrEryMt/SuqTSN6oUZLu82k3uQHOqB+adIGUnctW0EEAP8/01DyTINhGIYxh2qy5NZEzvt/Q3Z2NgIDA5GamgoASEhIQFBQEPz9/TF+/HjIsnVcWIZhqhfFyX2mNmugUp3GwYMH0aFDB5w5c/dVSX5+PgYPHoxffvkFp06dwuHDh7F5Mz29ZBiGeaQpXnJrarMCKtVpfPPNN5g/fz48PT0BAElJSfD390f9+vWhUqkQFRWFNWvWGP3+wsJCaDSaBzaGYZhHAVlXykzDSOJhVaNSYxpLlix54Otr166VOBAAqFOnDq5fv270+2NiYjB16lRBV0kSVAqp5Our2XT58oDHxAB0jZN02fHNN14ide/aTqTezMuF1J/QrRW0esl0prCiaz9SH/0TXb65ffB0Uu/51RuCtuclOhAYclnsPw0AN/3EQCgAfLWFziCfmCwGfeOGiwF5AOgWJfaCBgD3ZnQ/aDsXO1I/82WyoJ04Sb/ebGlHZ/4GBNP7fj2XznwflzxU0IZ4fkja2hhZSbN6OL34IuZYLKlvPn9A0GyNlFGfsuspUp8kTSP1GyF0v/aP7cXs9E0X6EUQaZ70s/KK3RFS//NOW1Kv4yj+ESg9Ri8wyb5En/8Vm56kfvkDukf6M5fohQCoOYnWTVFNSqNXekzjfgwGAyTp3i97WZahUBgfUnR0NLKyskq2y5cvV8YwGYZhSkXWyqXENKzDaVh09ZS3t/cDM4u0tLQHZh7/xs7ODnZ29F+GDMMwlkTW6iHf98aD+twasOhMo3Xr1jh9+jTOnj0LvV6PZcuWoVu3bpYcEsMwTPkwyPeW3VKblbyesuhMw97eHnFxcejXrx/y8/MRERGByMhISw6JYRimXBi0Bhgk48Fug5UsubWI0yjO0QCA8PBwHD9+/KH2dye3CIXSvSB3hqaQtGvmkS5ocrpYXhsAxgeLPa8BwLAjgdRzG9MBZWSJU9Jl3nSQ7Zlsuuz6XB/a/oYPnRG+t98iQQu7QAc8z7em+1jXs6PvybDPXyd1bTdxQcHQJ+je3quvfUDq11bRwerjGfRfaJ+EidfcI5IOpjt8RgfljVV9mGpH23t/FiZoe//ZStpKSvpVRcu+Yi9sAPhsuQepv1t/maDdnkavMnS0oZ/nW/rJpH41m85mf/zOMUHr8QRpCuWZ3aSu/+s0qWc+Q2fbB9kkClq+QwPS9uk69MITTSEdID97M4fUa9ejn0W6eYFpZIMM2cRswtRnVQnOCGcYhqkA9FoD9CZmGnqeaTAMwzDFyAYDZBMFC019VpVgp8EwDFMByDrTMQ1rSe4r0+qpXbt2/VfjYBiGqdLIernUzRoo00xjzpw5GDFiBF599VUMHDgQfn5+/9GwykZ/h9VQO9zrEb7PcThppykSg36qDmNJWzf8TeqKrs+RunP6TlLXbRAd7YA36SxXqZAuuy7XpstAH7hGr/v2cBDrOkvudFb5k/98SupZC/aQ+hOLB5D681P/EbTFZ6aQtnobJakb68udvJrO2o/fI967E3GppO3jremS4WmpdC/4Pjn0MzQ58ktBax9J359+zuNIfXOtGFJ/YSxd0j+hgfhjWseBXqggnf2D1OHkTMq1atEtAORUsZS8UkEvMIEtHUwv6jOG1NPP060Bitb9JGjXBomLAADgMXs6sdcXf9LHdBcXMADAE3n0/qGms9xNodeVEtOojjONTZs2Ye/evXB2dka/fv0QHh6OZcuWoaCA/sFjGIapLhi08t1lt0Y365hplDm5r3bt2ujVqxd69OiBlJQUfP/99wgKCsKqVav+i/ExDMNUCYqX3JrarIEyvZ5asGABfvzxR2RmZmLQoEFITEyEp6cn0tPTERgYiJdffvm/GifDMMwjjUGnh6kXUAaddZQRKZPTSEpKwqxZs9ChQ4cHdA8PD8TG0hU6GYZhqgOyXoYsmUjuq46B8H+XNr8fLv/BMEx1Rq8zQA/jBQutJRBuFXkactpNyI73qt+2c5xD2yWJfQwyutLlNTZcpUsdPJ/8PqkX9nmP1G8NGChoNQrukLbuu+n+GL8HzCT1HjveIvVNIV8JWsEKsUQDAJwbK/bBAICUaLqMRpOoUFLf/NMIQfvy4nLSNmHbOVL/+ckvSL2nM90LpEOKuJLrMx19DY1l46qM/ATEnBNXSQFA4xBxFZJLF3oF0g8r6WfL45VGpK7YTIcY05PEHjPHnOnVPT98vIDUV/dJInU8Rl+X1MdHCZrfHXoVmzHsbx8l9R5P0sc8X+sHQau/NIq0XduZfrPxSl16LAGP0SsTj2jovjlP07sxCc80GIZhGLMxaA0wyMZnGgaeaTAMwzAlyKWskJJ5psEwDMP8PwatAQaDiZmGnmcaDMMwzP9jMMgwmIhpGKwkT0OS5ao7Z9JoNHBxcUHWlR+gVjuU6HIR3ZcBBWJN/aLlO0jTIwOWkvozthtJvciVDm7aXhDLiBQ+0Zm0VS2jA8Ew0pdB8Tjdf+OZz5oKmkcbb9J2Y/DPpP6Z+kNS/yD0BqkPnCdqz3eheyE846Mm9UTnZqT+8q908D1z+QlBm9SFDmB3eZMOqLbr6U7qfRViIBgAdvfaJmhFf9E9LGQjwXf7zv6kjiK6vMa12MOC5lCLLoty4bMtpB6cRJc0gYou6SIFBoqijh4fatAlStKcepN6HRsjQXli//ItulzI+sIXSf34OfpeTOlwitTHbKGbhMx9kX4WKYp/D+1v+CSclPT1BIAcvR5tT/+DrKwsqNX0z0BVgGcaDMMwFYBOD9AtoO59bg2w02AYhqkADAbAREjDaJfIqgY7DYZhmApArwd0Jl72W0kcnJ0GwzBMRWAwwHTtKXYajw5ZdgGQ7e4F49T5v5N2HcaKzeg3/jCXtG0sZZD60aw+pO6ru03qOw1iRrjuDP30tF9J9/DwXvYuqX+U2JzUD24Xg4Fame7VgPX0WHb8/BepD5hL94JYHCam4naK7kXa7uvXhNS/ukr3X9Dv3EfqNXs+KWjjvh5K2nqOb0jqF9eeJfUNQf8j9bzdYu8Ibb6WtH3Rla4eEO9zmtRbvOZE6ofGia0HlF17kLY2H9DXXIqmn9sCzxBStz/zq6DJl8WKCgCQ0WkiqT9+jr6G6f70PaL6ddjXobPtu38lViAAgPCz9M+h/LT4cwgAuRojPULKgU4H6EzUDbeS3D7rcBoMwzCWhmcaDMMwjNno9TL0JjIY9FaSp8FOg2EYpgLgmQbDMAxjNjq96biFqZVVVQmrcBrOR5bA+b7S6HIRHZiM/lQM2NW8TZd7LlqymdSfHPcZqf/8J52h+1KQGFB3/G0+aSt9Qfck0f64gdQ/SP6O1O90F0tMv/HVJdJ2RX1SxtgV0aT+QgdaX75WzGbfsrM9aas+/C2pZ0+lM4W/fZk+zxGrhgua0sZIefG9dGaxb28xmA4A6fuvkrqTp5j93DP/TdJ2+vYPSL3Ik64esPAOnbWsCP1Y0K6/Rj+Htcd0IHXDwSOkbt8viNQ1/mLGtfP5WaTtnUJXUvdo3JrUHWU6a3v/NS9Ba1rLjrAE1O+K1wQAno0QqwQAQLfD9Fh6hHmQennQ6wCdiTwNK6mMbh1Og2EYxtKUmtzHToNhGIYpRqc3PdPg11MMwzBMCTzTYBiGYcwmW2cwWbAw///XVmk0mgd0Ozs72NnRsZtHEatwGqFT60OpuheInriEzn71cRJvjMalE2n7+0t0Wefnr9F9r4O8h5C6k2Y3YUwHHyXXx0nddjQdxHOYTPdCtz++RNDeX0T3Ai/o5UfqrW7QWfXhCXQQ84m6/QTt+al0tvXmvvak/poXHdxM/x8dIH/dRfzTzWbTbtJ25ByxvDgArOn8G6nXeYIO7uovZwvab0r62ubYPkbqhefpHvHNl9DZ3PJfxwTNtSkdwJVq16L3ceUmbZ+VRuqoIQaljZFhJCPez1mswAAA9gr6/Bu4iYsSnFT0AoaLbV4j9Z930X3JfRLpagOSZKRMPWh7CltbWzz++OMYmZZSqq2TkxN8fHwe0CZPnowpU6aU+r2zZ89GbGwsnJyckJaWhvbt22P9+vVmj7OisAqnwTAMYyns7e2RkpKCIiP9UO5HlmVI0oPvsMyZZWRkZGDAgAE4d+4cBg0ahBMnTmD4cHH1YGXAToNhGOYhsbe3h709PYMuL5MmTcLGjXebvk2bNg1paWkICwvDypUrMW6ckaZalYCJ8loMwzCMpZg2bRqOHTuGY8eOoV27dli4cCG6d++OQ4cOoaioCAUFYiHLyoCdBsMwzCPOyJEj8fLLL8PZ2RkZGRlYvHhxhc9szMUqeoRvO30Jjs73eu620y8j7SW1GJiM3k2X6R4WSmcKP1GwgtSvO/Ul9Z0X8gWtcW26p3ITN7pk9phl9C36uu1uUs+v11XQFLMm0OP7nD7msTWbSP0jWzo7u/fOLoKWfuQ6abs3Mp7UL8Qmk7rSznjf5X/zesBUUv9oDZ3J3n4Y3SP6zAY6qFnrSfHe7dumISyBJo3o9Zfvdv6c1Jeem0bqujwx0KxyEEu0A0CdUfSiiRsLDpG6cgXd894jZ6ugHdTTz7jfSPHeA0DtOa+SeqEXXSlg0z9i8L3n5jdI2/XdF5C6vS39d3CvunRGfOsIOvP/4A66fDvDMw2GYRimDLDTYBiGYcyGnQbDMAxjNuw0GIZhGLOxikB45tJXoHawLdG7/E5nhH8fIwaIPWbQmd813n6ePqizG61fPEfKmQ0HC9rb887T4xvjTup/ZfiReitHOqC8LPUZQYvyoTO89+eJ1wQAgjzoftA9R9Pnqa4t9iCv35jOTt4fJ2Y439XptKE+sfR+FhwVg/v5GeLCAwBwepzuke5Qy4HUOx0TM9wBoEZdMctZYaQc+7a6Yol6AKjxMd3fuuDzhaQuE0WL7Ac/S9pqN9H91HOTb5C6rYstqUfajxW0jfXp81EMHUXqylw621zvSFc+yNaKus2H9LUa6EEvbBjavympa/LpAh89/ekx1lDR+2F4psEwDMOUgUfCaaxYsQKNGzeGv78/YmNjLT0chmEYxggWLyNy9epVREdHIzk5Gfb29mjbti06duyIwMBASw+NYRiG+RcWdxoJCQkIDw+Hu/vd9/mRkZFYs2YN6TQKCwtRWFhY8nVWVhYAQPOvKpu6ojzyWNkaMQnLrpB+16nNpt+NQ6b3jRw6pT9bI1ZF1RbkkrYaDV24LCebTh7T6Omx5OeIx9RoaNvcfCP7tsshdWPXVkucfmGekX1o6Wur0dBJfMauV7ZWL2j5OlEDAFlL32ddEa3rdfQYdVoxqU4h0xN2TSFd/VVr5F4UFND2VNixKJt+3rRGKs7mGjlP20J67DpJHOO/f86KUWjo+6PMpc9Trzd2P8Xn1sbYz6eRZyIvW9wHAOQV0PvRaOhnVKvSwNnZWSguyDwCgfCYmBjk5uZixowZAIBFixYhKSkJ330nZh5PmTIFU6fSGb8MwzAVSVZWFtRqdemG1QyLzzQMBsMD3lyWZSgU9F8/0dHRGDv23qqOO3fuwNfXF5cuXYKLC1273xrQaDTw8fHB5cuXrfohrg7nWR3OEbCO83R2psv9VHcs7jS8vb2xd+/ekq/T0tLg6elJ2hrrcOXi4lJlH8yyoFar+TythOpwjkD1Oc/qhMVXT3Xu3BkJCQm4efMmcnNzsXr1anTtSucOMAzDMJbF4jMNLy8vzJw5E6GhodBqtRg2bBhatWpl6WExDMMwBMop5jSn/Y8JDCoh7n0AAAUJSURBVAzE22+/jVGjRqFdu3Zl+l6lUolOnTpBpbK4//tP4fO0HqrDOQLV5zyrGxZfPcUwDMNUHSwe02AYhmGqDuw0GIZhGLNhp8EwDMOYTZV1GtZe5DA7OxuBgYFITU0FcLfcSlBQEPz9/TF+/HiytERVY86cOWjSpAkCAwMxZMgQFBUV4dixY3j66afRoEEDDB06FFotXbqiKhEdHY1GjRqhcePGmDNnDgDrvJ8AMG7cOAwaNAgArPJeMgDkKsiVK1fkunXryrdu3ZJzcnLkoKAg+c8//7T0sCqMAwcOyE2bNpVtbGzklJQUOS8vT/b29pb/+ecfWavVyl26dJE3btxo6WE+FAcPHpQDAgLknJwc2WAwyFFRUfKcOXPkJk2ayImJibIsy/KQIUPkefPmWXikD8evv/4qd+jQQdZqtXJubq7s5+cnHzt2zOrupyzLckJCgvzYY4/JAwcOlGVZtrp7ydylSs407i9y6OjoWFLk0Fr45ptvMH/+/JLM+KSkJPj7+6N+/fpQqVSIioqq8udbs2ZNxMbGwtHREZIkoWnTpvjzzz+Rl5dXsux60KBBVf48u3fvjt9++w0qlQrp6enQ6/W4c+eO1d3PzMxMjB8/Hh9//DEA4OLFi1Z3L5m7VEmnce3atQdKjdSpUwfXr1+34IgqliVLlqBDhw4lX1vj+fr7+6Njx44AgJs3byI2NhYNGjSwuvMEABsbG0yYMAGNGjVCWFiYVd7PESNG4JNPPkHNmjUBWOczy9ylSjqNshQ5tAas+XxTU1MRGhqK119/HSEhIVZ7njNmzMCtW7dw5coVnD171qrOc9GiRfDx8UF4eHiJZs3PbHWnSqZqlqXIoTXg7e39wF9p1nK+x44dQ0REBD766COMGjUKFy9etLrzPHnyJAwGAwIDA+Hg4IA+ffpgzZo1UCrv9Q6p6uf5008/4fr162jWrBkyMzORk5MDSZKs7l4yd6mSrr+6FTls3bo1Tp8+jbNnz0Kv12PZsmXo1q2bpYf1UKSnp6Nr166YP38+Ro0aBQDw9fWFvb19yR8ES5curfLneerUKbzxxhsoKipCYWEh1q1bh8GDB1vV/YyPj8dff/2FY8eOYdq0aejZsyeWLFlidfeSuUuVnGlUtyKH9vb2iIuLQ79+/ZCfn4+IiAhERkZaelgPxZdffgmNRoNp06Zh2rRpAICIiAgsX74cw4YNQ3Z2NoKDg/HOO+9YeKQPR2RkJJKTk9GsWTMolUq8+OKLeO211+Dl5WVV95PC2u4lcxeuPcUwDMOYTZV8PcUwDMNYBnYaDMMwjNmw02AYhmHMhp0GwzAMYzbsNBiGYRizYafBMAzDmA07DYZhGMZs2GkwDMMwZsNOg2EYhjEbdhqMVTNv3jyEhIRAlmUcPnwYvr6+yMjIsPSwGKbKwk6DsWpGjRoFlUqF2NhYDBw4EIsWLYK7u7ulh8UwVRauPcVYPRcvXkRAQAAGDhxolf3kGaYy4ZkGY/VcvHgRTk5OOHr0KAwGg6WHwzBVGnYajFWTm5uLoUOHYu3atfD09MScOXMsPSSGqdLw6ynGqnnrrbcgSRK+/vprXL9+HcHBwdi5cycaNWpk6aExTJWEnQbDMAxjNvx6imEYhjEbdhoMwzCM2bDTYBiGYcyGnQbDMAxjNuw0GIZhGLNhp8EwDMOYDTsNhmEYxmzYaTAMwzBmw06DYRiGMRt2GgzDMIzZ/B86Bx9kJhoawwAAAABJRU5ErkJggg==" ] }, "metadata": {} } ], "execution_count": 6, "metadata": {} } ], "metadata": { "kernel_info": { "name": "julia-0.6" }, "kernelspec": { "name": "julia-0.6", "language": "julia", "display_name": "Julia 0.6.2" }, "language_info": { "file_extension": ".jl", "name": "julia", "mimetype": "application/julia", "version": "0.6.2" }, "nteract": { "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 2 }