TITLE K-A channel from Klee Ficker and Heinemann
: modified to account for Dax A Current --- M.Migliore Jun 1997
: modified to be used with cvode M.Migliore 2001
: thread-safe 2010-05-31 Ben Suter
: 2010-11-07 Ben Suter, removing "ka" from parameter names, reformatting, setting sh = 0 (was 24 mV)
:
: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
: Copyright 2011, Benjamin Suter (for changes only)
: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
}
PARAMETER {
v (mV)
celsius (degC)
ek
sh = 0
gbar = 0.008 (mho/cm2)
vhalfn = 11 (mV)
vhalfl = -56 (mV)
a0l = 0.05 (/ms)
a0n = 0.05 (/ms)
zetan = -1.5 (1)
zetal = 3 (1)
gmn = 0.55 (1)
gml = 1 (1)
lmin = 2 (mS)
nmin = 0.1 (mS)
pw = -1 (1)
tq = -40
qq = 5
q10 = 5
qtl = 1
}
NEURON {
SUFFIX kap
USEION k READ ek WRITE ik
RANGE gbar,g, sh
: GLOBAL ninf,linf,taul,taun,lmin
}
STATE {
n
l
}
ASSIGNED {
ik (mA/cm2)
ninf
linf
taul
taun
g
}
INITIAL {
rates(v)
n=ninf
l=linf
}
BREAKPOINT {
SOLVE states METHOD cnexp
g = gbar*n*l
ik = g*(v-ek)
}
FUNCTION alpn(v(mV)) {
LOCAL zeta
zeta=zetan+pw/(1+exp((v-tq-sh)/qq))
alpn = exp(1.e-3*zeta*(v-vhalfn-sh)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION betn(v(mV)) {
LOCAL zeta
zeta=zetan+pw/(1+exp((v-tq-sh)/qq))
betn = exp(1.e-3*zeta*gmn*(v-vhalfn-sh)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION alpl(v(mV)) {
alpl = exp(1.e-3*zetal*(v-vhalfl-sh)*9.648e4/(8.315*(273.16+celsius)))
}
FUNCTION betl(v(mV)) {
betl = exp(1.e-3*zetal*gml*(v-vhalfl-sh)*9.648e4/(8.315*(273.16+celsius)))
}
DERIVATIVE states { : exact when v held constant; integrates over dt step
rates(v)
n' = (ninf - n) / taun
l' = (linf - l) / taul
}
PROCEDURE rates(v (mV)) { :callable from hoc
LOCAL a,qt
qt = q10^((celsius-24)/10)
a = alpn(v)
ninf = 1/(1 + a)
taun = betn(v)/(qt*a0n*(1+a))
if (taun<nmin) {
taun=nmin
}
a = alpl(v)
linf = 1/(1+ a)
taul = 0.26*(v+50-sh)/qtl
if (taul<lmin/qtl) {
taul=lmin/qtl
}
}