// $Id: pywrap.hoc,v 1.31 2012/08/04 03:19:13 samn Exp $
//* variables
declare("INITPYWRAP",0) // whether initialized properly
//* initialize pywrap
if(2!=name_declared("p")) {
print "pywrap.hoc: loading python.hoc"
load_file("python.hoc")
}
func initpywrap () { localobj pjnk
INITPYWRAP=0
if(2!=name_declared("p")){printf("initpywrap ERR0A: PythonObject p not found in python.hoc!\n") return 0}
print p
pjnk=new PythonObject()
if(!isojt(p,pjnk)){printf("initpywrap ERR0B: PythonObject p not found in python.hoc!\n")}
if(!nrnpython("import numpy")) {printf("pypmtm ERR0C: could not import numpy python library!\n") return 0}
INITPYWRAP=1
return 1
}
initpywrap()
//** pypmtm(vec,samplingrate[,nw])
// this function calls python version of pmtm, runs multitaper power spectra, returns an nqs
obfunc pypmtm () { local sampr,spc,nw localobj vin,str,nqp,ptmp
if(!INITPYWRAP) {printf("pypmtm ERR0A: python.hoc not initialized properly\n") return nil}
if(!nrnpython("from mtspec import *")) {printf("pypmtm ERR0B: could not import mtspec python library!\n") return nil}
/* if(!nrnpython("import numpy")) {printf("pypmtm ERR0C: could not import numpy python library!\n") return nil}*/
if(numarg()==0) {printf("pypmtm(vec,samplingrate)\n") return nil}
vin=$o1 sampr=$2 str=new String()
p.vjnk = vin.to_python()
p.vjnk = p.numpy.array(p.vjnk)
spc = 1.0 / sampr // "spacing"
nw=4 if(numarg()>2) nw=$3
sprint(str.s,"[Pxx,w]=mtspec(vjnk,%g,%d)",spc,nw)
nrnpython(str.s)
nqp=new NQS("f","pow")
nqp.v.from_python(p.w)
nqp.v[1].from_python(p.Pxx)
return nqp
}
//** pybspow(vec,samplingrate[,maxf,pord])
// this function calls python version of bsmart, to get power pectrum, returns an nqs
// pord is order of polynomial -- higher == less smoothing. default is 12
obfunc pybspow () { local sampr,pord,maxf localobj vin,str,nqp,ptmp
if(!INITPYWRAP) {printf("pybspow ERR0A: python.hoc not initialized properly\n") return nil}
if(!nrnpython("from spectrum import ar")) {printf("pybspow ERR0B: could not import spectrum python library!\n") return nil}
if(numarg()==0) {printf("pybspow(vec,samplingrate)\n") return nil}
vin=$o1 sampr=$2 str=new String()
if(numarg()>2) maxf=$3 else maxf=sampr/2
if(numarg()>3) pord=$4 else pord=64
p.vjnk = vin.to_python()
p.vjnk = p.numpy.array(p.vjnk)
sprint(str.s,"Pxx,F=ar(vjnk,rate=%g,order=%d,maxfreq=%g)",sampr,pord,maxf)
nrnpython(str.s)
nqp=new NQS("f","pow")
nqp.v[0].from_python(p.F)
nqp.v[1].from_python(p.Pxx)
return nqp
}
//** pyspecgram(vec,samplingrate[,orows])
// this function calls python version of specgram, returns an nqs
obfunc pyspecgram () { local sampr,spc,i,j,sz,f,tt,orows,a localobj vin,str,nqp,ptmp,vtmp
if(!INITPYWRAP) {printf("pyspecgram ERR0A: python.hoc not initialized properly\n") return nil}
if(!nrnpython("from matplotlib.mlab import specgram")) {printf("pyspecgram ERR0B: could not import specgram from matplotlib.mlab!\n") return nil}
if(numarg()==0) {printf("pyspecgram(vec,samplingrate)\n") return nil}
a=allocvecs(vtmp)
vin=$o1 sampr=$2 str=new String()
if(numarg()>2)orows=$3 else orows=1
p.vjnk = vin.to_python()
p.vjnk = p.numpy.array(p.vjnk)
sprint(str.s,"[Pxx,freqs,tt]=specgram(vjnk,Fs=%g)",sampr)
nrnpython(str.s)
if(orows) {
{nqp=new NQS("f","pow") nqp.odec("pow")}
{sz=p.Pxx.shape[0] nqp.clear(sz)}
for i=0,sz-1 {
{vtmp.resize(0) vtmp.from_python(p.Pxx[i]) f=p.freqs[i]}
nqp.append(f,vtmp)
}
} else {
nqp=new NQS("f","pow","t")
sz = p.Pxx.shape[0]
nqp.clear(sz * p.Pxx.shape[1])
for i=0,sz-1 {
{vtmp.resize(0) vtmp.from_python(p.Pxx[i]) f=p.freqs[i]}
for j=0,vtmp.size-1 nqp.append(f,vtmp.x(j),p.tt[j])
}
}
dealloc(a)
return nqp
}
//** pycsd(vec1,vec2,samplingrate)
// this function calls python version of csd (cross-spectral density)
// returns an nqs with csd -- csd is non-directional
obfunc pycsd () { local sampr,a localobj v1,v2,str,nqp
if(!INITPYWRAP) {printf("pycsd ERR0A: python.hoc not initialized properly\n") return nil}
if(!nrnpython("from matplotlib.mlab import csd")) {printf("pycsd ERR0B: could not import csd from matplotlib.mlab!\n") return nil}
if(numarg()==0) {printf("pycsd(vec,samplingrate)\n") return nil}
v1=$o1 v2=$o2 sampr=$3 str=new String()
{p.vjnk1=v1.to_python() p.vjnk1=p.numpy.array(p.vjnk1)}
{p.vjnk2=v2.to_python() p.vjnk2=p.numpy.array(p.vjnk2)}
sprint(str.s,"[Pxy,freqs]=csd(vjnk1,vjnk2,Fs=%g)",sampr)
nrnpython(str.s)
nqp=new NQS("f","pow")
nqp.v[0].from_python(p.freqs)
nqp.v[1].from_python(p.Pxy)
return nqp
}
//** pypsd(vec,samplingrate[,NFFT])
// this function calls python version of psd (power-spectral density)
// returns an nqs with psd
obfunc pypsd () { local sampr,NFFT localobj v1,str,nqp
if(!INITPYWRAP) {printf("pypsd ERR0A: python.hoc not initialized properly\n") return nil}
if(!nrnpython("from matplotlib.mlab import psd")) {printf("pypsd ERR0B: could not import psd from matplotlib.mlab!\n") return nil}
// nrnpython("from matplotlib.mlab import window_none")
if(numarg()==0) {printf("pypsd(vec,samplingrate)\n") return nil}
v1=$o1 sampr=$2 str=new String()
{p.vjnk1=v1.to_python() p.vjnk1=p.numpy.array(p.vjnk1)}
if(numarg()>2) NFFT=$3 else NFFT=v1.size
if(sz%2==1) sz+=1
sprint(str.s,"[Pxx,freqs]=psd(vjnk1,Fs=%g,NFFT=%d)",sampr,NFFT)
nrnpython(str.s)
nqp=new NQS("f","pow")
nqp.v[0].from_python(p.freqs)
nqp.v[1].from_python(p.Pxx)
return nqp
}
//** pycohere(vec1,vec2,samplingrate)
// this function calls python version of cohere (coherence is normalized csd btwn vec1, vec2)
// returns an nqs with coherence
obfunc pycohere () { local sampr,a localobj v1,v2,str,nqp
if(!INITPYWRAP) {printf("pycohere ERR0A: python.hoc not initialized properly\n") return nil}
if(!nrnpython("from matplotlib.mlab import cohere")) {printf("pycohere ERR0B: could not import cohere from matplotlib.mlab!\n") return nil}
if(numarg()==0) {printf("pycohere(vec1,vec2,samplingrate)\n") return nil}
v1=$o1 v2=$o2 sampr=$3 str=new String()
{p.vjnk1=v1.to_python() p.vjnk1=p.numpy.array(p.vjnk1)}
{p.vjnk2=v2.to_python() p.vjnk2=p.numpy.array(p.vjnk2)}
sprint(str.s,"[Pxy,freqs]=cohere(vjnk1,vjnk2,Fs=%g)",sampr)
nrnpython(str.s)
nqp=new NQS("f","coh")
nqp.v[0].from_python(p.freqs)
nqp.v[1].from_python(p.Pxy)
return nqp
}
//* pypca(matrix) - does PCA on input matrix and returns scores (projections onto PCs)
// rows of the matrix are observations, columns are 'features' or 'dimensions'
obfunc pypca () { local r,c,a localobj inm,inmT,vin,vout,str,mout
if(!INITPYWRAP) {printf("pypca ERR0A: python.hoc not initialized properly\n") return nil}
if(!nrnpython("from princomp import PCA")) {printf("pypca ERR0B: could not import PCA!\n") return nil}
if(!nrnpython("import numpy as np")){printf("pypca ERR0C: could not import numpy as np!\n") return nil}
str=new String2()
if(numarg()<1) {printf("pypca(Vector,rows,cols)\n") return nil}
a=allocvecs(vin,vout)
{inm=$o1 r=inm.nrow c=inm.ncol}
inmT = inm.transpose() // transpose since to_vector goes in column ordering
{vin.resize(r*c) inmT.to_vector(vin)}
p.vjnk = vin.to_python() // convert to python format
sprint(str.s,"vjnk=np.resize(vjnk,(%d,%d))",r,c)
if(!nrnpython(str.s)){printf("pypca ERR0D: could not run %s\n",str.s) dealloc(a) return nil}
if(!nrnpython("mypca=PCA(vjnk)")){printf("pypca ERR0E: could not run PCA\n") dealloc(a) return nil}
if(!nrnpython("score=mypca.Y")){printf("pypca ERR0F: could not set scores\n") dealloc(a) return nil}
sprint(str.s,"score=np.resize(score,(%d,1))",r*c)
if(!nrnpython(str.s)){printf("pypca ERR0E: could not run %s\n",str.s) dealloc(a) return nil}
vout.from_python(p.score) // convert to a hoc Vector
mout=new Matrix(c,r)//output as a matrix. NB: c,r are reversed from original for following transpose
mout.from_vector(vout)//from_vector uses column ordering
mout = mout.transpose()//so need to transpose
dealloc(a)
return mout
}
//* pyspecck(vec,sampr[,maxf,win]) - call ck's spectrogram.py
// vec = time-series. sampr = sampling rate (Hz).
// maxf = max frequency. win = window size (seconds) for specgram chunks
// system call to spectrogram.py file to display a spectrogram, writes temp
// file and then deletes it...
func pyspecck () { local i,sampr,maxf,win localobj fp,vec,str
vec=$o1 sampr=$2
if(numarg()>2)maxf=$3 else maxf=sampr/2
if(numarg()>3)win=$4 else win=1
str=new String2()
fp=new File()
if(!fp.mktemp()){printf("pyspecck ERR0: couldn't make temp file!\n") return 0}
str.s=fp.getname()
fp.wopen(str.s)
for i=0,vec.size-1 fp.printf("%g\n",vec.x(i))
fp.close()
sprint(str.t,"/usr/site/nrniv/local/python/spectrogram.py %s %g %g %g",str.s,sampr,maxf,win)
print str.t
system(str.t)
fp.unlink()
return 1
}
//* pykstest(vec1,vec2) - perform a two-sample, two-sided kolmogorov-smirnov test
// and return the p-value. kstest checks if values in vec1,vec2 come from same distribution (null hypothesis)
// returns -1 on failure. uses scipy.stats.ks_2samp function
func pykstest () { localobj v1,v2
if(!INITPYWRAP) {printf("pykstest ERR0A: python.hoc not initialized properly\n") return -1}
{v1=$o1 v2=$o2}
if(!nrnpython("from scipy.stats import ks_2samp")) return -1
{p.v1=v1.to_python() p.v2=v2.to_python()}
if(!nrnpython("(D,pval)=ks_2samp(v1,v2)")) return -1
return p.pval
}