/* version. */
/* This library is distributed in the hope that it will be useful, */
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. */
/* See the GNU Library General Public License for more details. */
/* You should have received a copy of the GNU Library General */
/* Public License along with this library; if not, write to the */
/* Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA */
/* 02111-1307 USA */
/* Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura. */
/* When you use this, send an email to: matumoto@math.keio.ac.jp */
/* with an appropriate reference to your work. */
/* REFERENCE */
/* M. Matsumoto and T. Nishimura, */
/* "Mersenne Twister: A 623-Dimensionally Equidistributed Uniform */
/* Pseudo-Random Number Generator", */
/* ACM Transactions on Modeling and Computer Simulation, */
/* Vol. 8, No. 1, January 1998, pp 3--30. */
#include <math.h>
#include "rgenerator.h"
/* initializing the array with a NONZERO seed */
void
sgenrand(seed)
unsigned long seed;
{
/* setting initial seeds to mt[N] using */
/* the generator Line 25 of Table 1 in */
/* [KNUTH 1981, The Art of Computer Programming */
/* Vol. 2 (2nd Ed.), pp102] */
mt[0]= seed & 0xffffffff;
for (mti=1; mti<N; mti++)
mt[mti] = (69069 * mt[mti-1]) & 0xffffffff;
}
double /* generating reals */
/* unsigned long */ /* for integer generation */
genrand()
{
unsigned long y;
static unsigned long mag01[2]={0x0, MATRIX_A};
/* mag01[x] = x * MATRIX_A for x=0,1 */
if (mti >= N) { /* generate N words at one time */
int kk;
if (mti == N+1) /* if sgenrand() has not been called, */
sgenrand(4357); /* a default initial seed is used */
for (kk=0;kk<N-M;kk++) {
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1];
}
for (;kk<N-1;kk++) {
y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1];
}
y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);
mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1];
mti = 0;
}
y = mt[mti++];
y ^= TEMPERING_SHIFT_U(y);
y ^= TEMPERING_SHIFT_S(y) & TEMPERING_MASK_B;
y ^= TEMPERING_SHIFT_T(y) & TEMPERING_MASK_C;
y ^= TEMPERING_SHIFT_L(y);
return ( (double)y * 2.3283064365386963e-10 ); /* reals: [0,1)-interval */
/* return y; */ /* for integer generation */
}
double gasdev()
{
static int iset=0;
static double gset;
double fac,rsq,v1,v2;
if (iset == 0) {
do {
v1=2.0*genrand()-1.0;
v2=2.0*genrand()-1.0;
rsq=v1*v1+v2*v2;
} while (rsq >= 1.0 || rsq == 0.0);
fac=sqrt(-2.0*log(rsq)/rsq);
gset=v1*fac;
iset=1;
return v2*fac;
} else {
iset=0;
return gset;
}
}
/* (C) Copr. 1986-92 Numerical Recipes Software V,3. */