nsyn_dist = 50
nsyn_prox = 3 * nsyn_dist
cutdist = 350
nsyn = nsyn_dist + nsyn_prox
objref syn[nsyn], nc[nsyn], st[nsyn]
weight = 5e-5
for i = 0, nsyn - 1 {
st[i] = new NetStimm(.5)
st[i].interval = 1000 / 50
st[i].number = 100000000000
st[i].noise = 1
st[i].start = 0
st[i].seed(114)
syn[i] = new Exp2Syn(.5)
syn[i].e = 0
syn[i].tau1 = 2
syn[i].tau2 = 10
nc[i] = new NetCon(st[i], syn[i], 0, 0, weight)
}
objref rcomp[2], rsec
use_mcell_ran4()
mcell_ran4_init()
rsec = new Random()
rsec.uniform(0, 1)
for i = 0, 1 rcomp[i] = new Random()
rcomp[0].uniform(0, numapical - 1)
/* distribuzione synapsi prossimali */
for i = 0, nsyn_prox - 1 {
flag = 0
while(flag == 0) {
comp = int(rcomp[0].repick())
tmp = rsec.repick()
apical_dendrite[comp] if(distance(tmp) < cutdist) flag = 1
}
apical_dendrite[comp] syn[i].loc(tmp)
}
objref seclst, rnd, secobj
seclst = new List()
forsec "user5" {
secobj = new SectionRef()
seclst.append(secobj)
}
forsec "apical" {
secobj = new SectionRef()
seclst.append(secobj)
}
rcomp[1].uniform(0, seclst.count() - 1)
for i = nsyn_prox, nsyn - 1 {
flag = 0
while(flag == 0) {
comp = int(rcomp[1].repick())
tmp = rsec.repick()
seclst.o(comp).sec if(distance(tmp) >= cutdist) flag = 1
}
seclst.o(comp).sec syn[i].loc(tmp)
}