# "Biophysical modeling of the whole-cell dynamics of C. elegans motor and interneurons families"
# M. Nicoletti et al. PloS ONE, 19(3): e0298105.
# https://doi.org/10.1371/journal.pone.0298105
def VA5_simulation_iclamp(gVA5_scaled,s1,s2,ns):
from neuron import h,gui
import numpy
import math
surf=389.3e-8 # surface in cm^2 form neuromorpho VA5L
vol=48.07e-12 # total volume
L=math.sqrt(surf/math.pi)
rsoma=L*1e4
cm_uFcm2=1
soma=h.Section(name="soma")
soma.L=rsoma
soma.diam=rsoma
soma.Ra=100
soma.cm=gVA5_scaled[9]
h.psection(sec=soma)
soma.insert('slo2egl19')
soma.insert('slo2iso')
soma.insert('egl19')
soma.insert('irk')
soma.insert('shk1')
soma.insert('leak')
soma.insert('nca')
soma.insert('cadiff')
for seg in soma:
seg.slo2egl19.gbar = gVA5_scaled[0]
seg.slo2iso.gbar=gVA5_scaled[1]
seg.egl19.gbar=gVA5_scaled[2]
seg.irk.gbar=gVA5_scaled[3]
seg.shk1.gbar=gVA5_scaled[4]
seg.nca.gbar=gVA5_scaled[5]
seg.leak.gbar=gVA5_scaled[6]
seg.leak.e=gVA5_scaled[7]
seg.slo2iso.c2=gVA5_scaled[8]
seg.eca=60
seg.ek=-80
stim=h.IClamp(soma(0.5))
dir(stim)
stim.delay=5000
stim.amp=10
stim.dur=1000
v_vec = h.Vector()
t_vec = h.Vector() # Time stamp vector
v_vec.record(soma(0.5)._ref_v)
t_vec.record(h._ref_t)
simdur =7000
ref_v=[]
ref_t=[]
for i in numpy.linspace(start=s1, stop=s2, num=ns):
stim.amp=i
h.tstop=simdur
h.dt=0.4
h.finitialize(-60)
h.run()
ref_t_vec=numpy.zeros_like(t_vec)
t_vec.to_python(ref_t_vec)
ref_t.append(ref_t_vec)
ref_v_vec=numpy.zeros_like(v_vec)
v_vec.to_python(ref_v_vec)
ref_v.append(ref_v_vec)
# total current calculation
v=[]
v=numpy.array(list(ref_v))
time1=numpy.array(ref_t)
resc_ind=numpy.where(time1[1,:]>=4900)
resc_min=numpy.amin(resc_ind)
resc_max=numpy.amax(resc_ind)
v_normalized=v[:,resc_min:resc_max]
time=time1[:,resc_min:resc_max]-4900
## CALCULATION OF STEADY-STATE CURRENT-VOLATGE RELATION
# ind=numpy.where(numpy.logical_and(time[0]>=5060, time[0]<=5100))
# ind_max=numpy.amax(ind)
# ind_min=numpy.amin(ind)
# iv=numpy.mean(v_normalized[:,ind_min:ind_max],axis=1)
#
# # CALCULATION OF PEAK CURRENT-VOLTAGE RELATION (as in Ramot et al 2008)
# ind2=numpy.where(numpy.logical_and(time[0]>=100, time[0]<=300))
# ind2_max=numpy.amax(ind2)
# ind2_min=numpy.amin(ind2)
# iv_peak=numpy.amax(v_normalized[:,ind2_min:ind2_max])
# iv_peak=[]
# for j in range(ns):
# if j<=2:
# peak=numpy.amin(v_normalized[j,ind2_min:ind2_max])
# else:
# peak=numpy.amax(v_normalized[j,ind2_min:ind2_max])
# iv_peak.append(peak)
return v_normalized, time