TITLE CCA1
: T-type, CCA-1, channels
: From Nicoletti et al. PloS One 2019 (https://doi.org/10.1371/journal.pone.0218738)
UNITS {
(mA) = (milliamp)
(S) = (siemens)
(mV) = (millivolt)
}
NEURON {
SUFFIX cca1
USEION ca READ eca WRITE ica
RANGE gbar
}
PARAMETER{
v (mV)
eca (mV)
celsius (degC)
gbar=0.7 (S/cm2)
va_cca1=-42.65
ka_cca1=1.7
sscca1=15
stmcca1=30
sthcca1=15
sshcca1=15
constmcca1=0.5
consthcca1=0.08
fcca=1.4
f2cca1=1.15
f3ca=1.7
f4ca=1.1
vi_cca1=-58
ki_cca1=7
p1tmcca1=40
p2tmcca1=-62.5393
p3tmcca1=-12.4758
p4tmcca1=0.6947
p1thcca1=280
p2thcca1=-60.7312
p3thcca1=8.5224
p4thcca1=19.7456
}
ASSIGNED{
ica (mA/cm2)
}
STATE {
m h
}
BREAKPOINT {
SOLVE states METHOD cnexp
ica = gbar*m*m*h*(v-eca)
}
INITIAL {
m=minf(v)
h=hinf(v)
}
DERIVATIVE states {
m' = (minf(v) - m)/mtau(v)
h'=(hinf(v)-h)/htau(v)
}
FUNCTION minf(v (mV)){
minf=1/(1+exp(-(v-va_cca1+sscca1)/(ka_cca1*fcca)))
}
FUNCTION hinf(m (mV)){
hinf =1/(1+exp((v-vi_cca1+sshcca1)/(ki_cca1*f2cca1)))
}
FUNCTION mtau(v (mV)){
mtau=((p1tmcca1/(1+exp(-(v-p2tmcca1+stmcca1)/(p3tmcca1*f3ca))))+p4tmcca1)*constmcca1
}
FUNCTION htau(v (mV)) {
htau=((p1thcca1/(1+exp((v-p2thcca1+sthcca1)/(p3thcca1*f4ca))))+p4thcca1)*consthcca1
}