TITLE EXP2
: From Nicoletti et al 2023
UNITS {
(mA) = (milliamp)
(S) = (siemens)
(mV) = (millivolt)
}
NEURON {
SUFFIX exp2
USEION k READ ek WRITE ik
RANGE gbar
}
PARAMETER{
v (mV)
ek (mV)
gbar (S/cm2)
celsius (degC)
va_exp2=-17 (mV)
ka_exp2=6.5 (mV)
vi_exp2=-50 (mV)
ki_exp2=10 (mV)
ptm1_exp2=40
ptm2_exp2=-20.5284
ptm3_exp2=4.7071
ptm4_exp2=2.4025
pth1_exp2=1.2790
pth2_exp2=-89.0175
pth3_exp2=49.3492
pth4_exp2=0.8739
}
ASSIGNED{
ik (mA/cm2)
g(S/cm2)
curr(mA/cm2)
}
STATE {
m h
}
BREAKPOINT {
SOLVE states METHOD cnexp
ik = gbar*m*h*h*(v-ek)
}
INITIAL {
m=minf(v)
h=hinf(v)
}
DERIVATIVE states {
m' = (minf(v) - m)/mtau(v)
h'=(hinf(v)-h)/htau(v)
}
FUNCTION minf(v (mV)) {
UNITSOFF
minf=1/(1+exp(-(v-va_exp2)/ka_exp2))
UNITSON
}
FUNCTION hinf(v(mV)){
UNITSOFF
hinf = 1/(1+exp((v-vi_exp2)/ki_exp2))
UNITSON
}
FUNCTION mtau (v(mV)){
UNITSOFF
mtau=((ptm1_exp2/(1+exp((v-ptm2_exp2)/ptm3_exp2)))+ptm4_exp2)*((ptm1_exp2/(1+exp(-(v-ptm2_exp2)/ptm3_exp2)))+ptm4_exp2)
UNITSON
}
FUNCTION htau(v(mV)){
UNITSOFF
htau=((pth1_exp2/(1+exp((v-pth2_exp2)/pth3_exp2)))+pth4_exp2)*((pth1_exp2/(1+exp(-(v-pth2_exp2)/pth3_exp2)))+pth4_exp2)
UNITSON
}