TITLE slo1egl19
: slo1 channels coupled with egl19 calcium channels (1:1 stoichiometry)
: From Nicoletti et al. PloS One 2019 (https://doi.org/10.1371/journal.pone.0218738)
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(nS) = (nanosiemens)
(pS) = (picosiemens)
(molar)=(1/liter)
(uM) = (micromolar)
FARADAY = (faraday) (coulombs)
(M)= (molar)
}
NEURON {
SUFFIX slo1egl19
USEION k READ ek WRITE ik
USEION ca READ eca
GLOBAL alpha1,beta1
RANGE gbar,g,mminf,tslo1,alph,bet,p,mca,hca,taca,tica,mminfca,hinfca,kcmCALC,kopCALC,komCALC,caCALC,m1,m2,curr
EXTERNAL megl19_egl19, hegl19_egl19
}
PARAMETER{
v (mV)
cai (uM)
fondo=0.05 (uM)
ek (mV)
eca (mV)
megl19_egl19
hegl19_egl19
celsius (degC)
gbar=.11 (S/cm2)
wom=3.152961 (/ms)
wyx=0.012643 (/mV)
kyx=34.338784 (uM)
nyx=0.000100 (1)
wop=0.156217 (/ms)
wxy=-0.027527 (/mV)
kxy=55.726186 (/ms)
nxy=1.299198 (1)
r=13e-9 (m)
d=250e-12 (um2/s)
kb=500e6 (/M-s)
b=30e-6 (M)
gsc=40e-12 (S)
pi=3.14
va_egl19=5.6 (mV)
ka_egl19=7.50 (mV)
stm19=10 (mV)
sth19=10 (mV)
p1hegl19=1.4314
p2hegl19=24.8573 (mV)
p3hegl19=11.9541 (mV)
p4hegl19=0.1427
p5hegl19=5.9589
p6hegl19=-10.5428 (mV)
p7hegl19=8.0552 (mV)
p8hegl19=0.6038
pdg1=2.3359 (ms)
pdg2=2.9324 (ms)
pdg3=5.2357 (mV)
pdg4=6.0 (mV)
pdg5=1.8739 (ms)
pdg6=1.3930 (mV)
pdg7=30.0 (mV)
stau19=10 (mV)
pds1=0.4
pds2=0.55
pds3=81.1179 (ms)
pds4=-22.9723 (mV)
pds5=5 (mV)
pds6=43.0937 (ms)
pds7=0.9
pds8=40.4885 (ms)
pds9=28.7251 (mV)
pds10=3.7125 (mV)
pds11=0
shiftdps=10
ctm19=1
}
ASSIGNED{
ik (mA/cm2)
g (S/cm2)
curr(mA/cm2)
mminf
tslo1
alph
alpha1
beta1
bet
mca
hca
taca
tica
mminfca
hinfca
kcmCALC
kopCALC
komCALC
caCALC
m1
m2
p
}
STATE {
m
}
BREAKPOINT {
SOLVE states METHOD cnexp
g=gbar*m*hegl19_egl19
mminf=mminf
tslo1=tslo1
mca=megl19_egl19
hca=hegl19_egl19
taca=tactegl19(v)
tica=tinactegl19(v)
mminfca=actegl19(v)
hinfca=inactegl19(v)
kcmCALC=kcm(v)
komCALC=kom(calcium(v),v)
kopCALC=kop(calcium(v),v)
caCALC=calcium(v)
m1=megl19_egl19
m2=hegl19_egl19
alph=alpha1
bet=beta1
curr=gbar*m*hegl19_egl19*(v-ek)
ik = gbar*m*hegl19_egl19*(v-ek)
}
INITIAL {
rates(calcium(v), v)
m=mminf
}
DERIVATIVE states {
rates(calcium(v), v)
m' = (mminf - m)/tslo1
}
PROCEDURE rates(calcium(v),v (mV)){
alpha1=actegl19(v)/tactegl19(v)
beta1=(1/tactegl19(v))-alpha1
mminf=(megl19_egl19*kop(calcium(v),v)*(alpha1+beta1+kcm(v)))/((kop(calcium(v),v)+kom(calcium(v),v))*(kcm(v)+alpha1)+(beta1*kcm(v)))
tslo1=((alpha1+beta1+kcm(v))/((kop(calcium(v),v)+kom(calcium(v),v))*(kcm(v)+alpha1)+(beta1*kcm(v))))
}
FUNCTION kcm(v (mV)){
kcm=wom*exp(-wyx*v)*(1/(1+((fondo/kyx)^nyx)))
}
FUNCTION kom(calcium(v),v (mV)){
kom=wom*exp(-wyx*v)*(1/(1+pow(calcium(v)/kyx,nyx)))
}
FUNCTION kop(calcium(v),v (mV)){
kop=wop*exp(-wxy*v)*(1/(1+pow(kxy/calcium(v),nxy)))
}
FUNCTION calcium(v (mV)){
calcium=(((fabs(gsc*(v-eca)*1e-3)/(8*pi*r*d*FARADAY))*exp(-r/sqrt(d/(kb*b))))*1e6*1e-3)+fondo
}
FUNCTION actegl19(v (mV)) {
UNITSOFF
actegl19=1/(1+exp(-(v-va_egl19+stm19)/ka_egl19))
UNITSON
}
FUNCTION inactegl19(m (mV)){
UNITSOFF
inactegl19= ((p1hegl19/(1+exp(-(v-p2hegl19+sth19)/p3hegl19))+p4hegl19)*(p5hegl19/(1+exp((v-p6hegl19+sth19)/p7hegl19))+p8hegl19))
UNITSON
}
FUNCTION tactegl19(m (mV)){
UNITSOFF
tactegl19= (pdg1+(pdg2*exp(-(v-pdg3+stau19)^2/(pdg4)^2))+(pdg5*exp(-(v-pdg6+stau19)^2/(pdg7)^2)))*ctm19
UNITSON
}
FUNCTION tinactegl19(v(mV)){
UNITSOFF
tinactegl19= pds1*(((pds2*pds3)/(1+exp((v-pds4+shiftdps)/pds5)))+pds6+((pds7*pds8)/(1+exp((v-pds9+shiftdps)/pds10)))+pds11)
UNITSON
}