TITLE slo2egl19
: slo2 channels coupled with egl19 calcium channels (1:1 stoichiometry)
: From Nicoletti et al. PloS One 2019 (https://doi.org/10.1371/journal.pone.0218738)
UNITS {
(mA) = (milliamp)
(S) = (siemens)
(mV) = (millivolt)
(pS) = (picosiemens)
(molar)=(1/liter)
(uM) = (micromolar)
(um) = (micron)
FARADAY = (faraday) (coulombs)
}
NEURON {
SUFFIX slo2egl19
USEION k READ ek WRITE ik
USEION ca READ eca
RANGE gbar, g, curr
GLOBAL minf,tslo2, alpha1,beta1
EXTERNAL megl19_egl19, hegl19_egl19
}
PARAMETER{
v (mV)
cai (uM)
bkg=0.05 (uM)
ek (mV)
eca (mV)
minf_egl19
hinf_egl19
mtau_egl192
htau_egl192
megl19_egl19
hegl19_egl19
celsius (degC)
gbar=.1 (S/cm2)
wom1=0.896395 (/ms)
wyx1=0.019405 (/mV)
kyx1=3294.553404 (uM)
nyx1=0.000010 (1)
wop1=0.026719 (/ms)
wxy1=-0.024123 (/mV)
kxy1=93.449423 (/ms)
nxy1=1.835067 (1)
r=13e-9 (nm)
d=250e-12 (um2/s)
kb=500e6 (1/(M-s)
b=30e-6 (M)
gsc=40e-12 (pS)
pi=3.14
va_egl19=5.6 (mV)
ka_egl19=7.50 (mV)
stm19=10 (mV)
sth19=10 (mV)
p1hegl19=1.4314
p2hegl19=24.8573 (mV)
p3hegl19=11.9541 (mV)
p4hegl19=0.1427
p5hegl19=5.9589
p6hegl19=-10.5428 (mV)
p7hegl19=8.0552 (mV)
p8hegl19=0.6038
pdg1=2.3359 (ms)
pdg2=2.9324 (ms)
pdg3=5.2357 (mV)
pdg4=6.0 (mV)
pdg5=1.8739 (ms)
pdg6=1.3930 (mV)
pdg7=30.0 (mV)
stau19=10 (mV)
pds1=0.4
pds2=0.55
pds3=81.1179 (ms)
pds4=-22.9723 (mV)
pds5=5 (mV)
pds6=43.0937 (ms)
pds7=0.9
pds8=40.4885 (ms)
pds9=28.7251 (mV)
pds10=3.7125 (mV)
pds11=0
shiftdps=10
ctm19=1
}
ASSIGNED{
ik (mA/cm2)
g (S/cm2)
curr (mA/cm2)
minf
tslo2
alpha1
beta1
}
STATE {
m
}
BREAKPOINT {
SOLVE states METHOD cnexp
g=gbar*m*hegl19_egl19
curr=gbar*m*hegl19_egl19*(v-ek)
ik = gbar*m*hegl19_egl19*(v-ek)
}
INITIAL {
rates(calcium(v), v)
m=minf
}
DERIVATIVE states {
rates(calcium(v), v)
m' = (minf - m)/tslo2
}
PROCEDURE rates(calcium(v),v (mV)){
alpha1=actegl19(v)/tactegl19(v)
beta1=(1/tactegl19(v))-alpha1
minf=(megl19_egl19*kop2(calcium(v),v)*(alpha1+beta1+kcm2(v)))/((kop2(calcium(v),v)+kom2(calcium(v),v))*(kcm2(v)+alpha1)+(beta1*kcm2(v)))
tslo2=((alpha1+beta1+kcm2(v))/((kop2(calcium(v),v)+kom2(calcium(v),v))*(kcm2(v)+alpha1)+(beta1*kcm2(v))))
}
FUNCTION kcm2(v (mV)){
kcm2=wom1*exp(-wyx1*v)*(1/(1+((bkg/kyx1)^nyx1)))
}
FUNCTION kom2(calcium(v),v (mV)){
kom2=wom1*exp(-wyx1*v)*(1/(1+pow(calcium(v)/kyx1,nyx1)))
}
FUNCTION kop2(calcium(v),v (mV)){
kop2=wop1*exp(-wxy1*v)*(1/(1+pow(kxy1/calcium(v),nxy1)))
}
FUNCTION calcium(v (mV)){
calcium=(((fabs(gsc*(v-eca)*1e-3)/(8*pi*r*d*FARADAY))*exp(-r/sqrt(d/(kb*b))))*1e6*1e-3)+bkg
}
FUNCTION actegl19(v (mV)) {
UNITSOFF
actegl19=1/(1+exp(-(v-va_egl19+stm19)/ka_egl19))
UNITSON
}
FUNCTION inactegl19(m (mV)){
UNITSOFF
inactegl19= ((p1hegl19/(1+exp(-(v-p2hegl19+sth19)/p3hegl19))+p4hegl19)*(p5hegl19/(1+exp((v-p6hegl19+sth19)/p7hegl19))+p8hegl19))
UNITSON
}
FUNCTION tactegl19(m (mV)){
UNITSOFF
tactegl19= (pdg1+(pdg2*exp(-(v-pdg3+stau19)^2/(pdg4)^2))+(pdg5*exp(-(v-pdg6+stau19)^2/(pdg7)^2)))*ctm19
UNITSON
}
FUNCTION tinactegl19(v(mV)){
UNITSOFF
tinactegl19= pds1*(((pds2*pds3)/(1+exp((v-pds4+shiftdps)/pds5)))+pds6+((pds7*pds8)/(1+exp((v-pds9+shiftdps)/pds10)))+pds11)
UNITSON
}