TITLE Ca-dependent non-specific cation current
: Original model written by Alain Destexhe, Salk Institute, Dec 7, 1992
: Kinetics based on: Partridge & Swandulla, TINS 11: 69-72, 1988.
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
SUFFIX cansc
USEION other2 WRITE iother2 VALENCE 1
USEION ca READ cai
RANGE gbar, i, g, ratc
GLOBAL m_inf, tau_m, beta, cac, taumin, erev, x
THREADSAFE m_inf, tau_m, beta, cac, taumin, erev, x
}
UNITS {
(mA) = (milliamp)
(mV) = (millivolt)
(molar) = (1/liter)
(mM) = (millimolar)
}
PARAMETER {
v (mV)
celsius (degC)
erev = -38 (mV)
cai (mM)
gbar = 4e-4 (mho/cm2)
beta = 1e-3 (1/ms) : backward rate constant
cac = 5e-4 (mM) : middle point of activation fct
cas = 2e-5 (mM) : middle point of activation fct
taumin = -0.1 (ms) : minimal value of time constant
ratc = 1e-1
x = 2
}
STATE {
m
}
INITIAL {
:
: activation kinetics are assumed to be at 22 deg. C
: Q10 is assumed to be 3
:
tadj = 3.0 ^ ((celsius-22.0)/10)
evaluate_fct(v,cai)
m = m_inf
}
ASSIGNED {
i (mA/cm2)
iother2 (mA/cm2)
g (mho/cm2)
m_inf
tau_m (ms)
tadj
}
BREAKPOINT {
SOLVE states METHOD cnexp
g = gbar * m*m
i = g * (v - erev)
iother2 = i
}
DERIVATIVE states {
evaluate_fct(v,cai)
m' = (m_inf - m) / tau_m
}
UNITSOFF
PROCEDURE evaluate_fct(v(mV),cai(mM)) { LOCAL alpha2:, tcar
alpha2 = ratc/(1+exp((cac-cai)/cas))
tau_m = 1 / (alpha2 + beta) / tadj
m_inf = alpha2 / (alpha2 + beta)
if(tau_m < taumin) { tau_m = taumin } : min value of time cst
}
UNITSON