#==============================================================================
# Point neuron (exponential I&F model) with 6 short dendrites.
# This script is used for the experiment: peak dendritic voltage per number of
# synapses!
#==============================================================================
from brian import *
from brian.library.ionic_currents import *
from brian.library.synapses import *
from brian.library.IF import *
import numpy as np
import time
import math
import random
def constrained_sum_sample_pos(n, total):
"""Return a randomly chosen list of n positive integers summing to total.
Each such list is equally likely to occur."""
dividers = sorted(random.sample(xrange(1, total), n - 1))
return [a - b for a, b in zip(dividers + [total], [0] + dividers)]
def constrained_sum_sample_nonneg(n, total):
"""Return a randomly chosen list of n nonnegative
integers summing to total.
Each such list is equally likely to occur."""
return [x - 1 for x in constrained_sum_sample_pos(n, total + n)]
def synchronous_input(A, N_pre):
"function to built a synchronous input"
C = []
for jj in range(len(A)):
for ll in xrange(N_pre):
B = list(A[jj])
B[0] = ll
B = tuple(B)
C.append(B)
C.sort(key = lambda tup: tup[1])
return C
start_time = time.time()
#Initialisation of the simulator
clear(erase = True, all = True)
reinit(states = True)
defaultclock.dt = 0.1*ms
N_granule = 1
NumberOfInputs = 1
# Parameters
gl = 0.00003 * siemens/(cm**2) # leakage conductance
gl_dend = 0.00001 * siemens/(cm**2) # leakage conductance
El_soma = -87.0 * mV # reversal-resting potential
El_dend = -82.0 * mV # reversal-resting potential
Cm = 1.0 * uF/(cm**2) # membrane capacitance
Cm_dend = 2.5 * uF/(cm**2) # membrane capacitance
v_th = -56.0 * mV # threshold potential
v_reset = -74.0 * mV # reset potential
# Morphology
# Soma
length_soma = 18.0 * um
diam_soma = 12.0 * um
area_soma = math.pi * diam_soma * length_soma
# Dendrites
Nseg = 9 # Number of dendritic compartments
Nbranch = 3 # Number of main branches
Ntips = 6 # Number of distal dendritic compartments
distal_l = 83.0 * um
medial_l = 83.0 * um
proximal_l = 83.0 * um
length_dend = [medial_l, medial_l, proximal_l]
length_dend *= Nbranch
distal_d = 0.80 * um
medial_d = 0.90 * um
proximal_d = 1.00 * um
diam_dend = [medial_d, medial_d, proximal_d]
diam_dend *= Nbranch
area_dend = [math.pi*x*y for x,y in zip(length_dend, diam_dend)]
# Synaptic Reversal Potentials
E_nmda = 0.0 * mV # NMDA reversal potential
E_ampa = 0.0 * mV # AMPA reversal potential
E_gaba = -70.0 * mV # GABA reversal potential
# AMPA/NMDA/GABA Model Parameters
gama = 0.04 * mV**-1 # the steepness of Mg sensitivity of Mg unblock
Mg = 2.0 # [mM]--mili Molar - the extracellular Magnesium concentration
eta = 0.2 # [mM**-1] -1- mili Molar **(-1) - Magnesium sensitivity of unblock
alpha_nmda = 2.0 * ms**-1
alpha_ampa = 1.0 * ms**-1
alpha_gaba = 1.0 * ms**-1
# EC Synapses
g_ampa = 0.8066 * nS # AMPA maximum conductance
g_nmda = 1.0800*g_ampa
t_nmda_decay = 50.0 * ms # NMDA decay time constant
t_nmda_rise = 0.33 * ms # NMDA rise time constant
t_ampa_decay = 2.5 * ms # AMPA decay time constant
t_ampa_rise = 0.1 * ms # AMPA rise time constant
# GABAergic Input from basket cells/hipp cells
g_gaba = 2.8 * nS # GABA maximum conductance
t_gaba_decay = 6.8 * ms # GABA decay time constant
t_gaba_rise = 0.9 * ms # GABA rise time constant
# Axial resistances
Ri = 210.0 * ohm * cm
ra0 = Ri * 4 / (pi * distal_d ** 2)
ra1 = Ri * 4 / (pi * medial_d ** 2)
ra2 = Ri * 4 / (pi * proximal_d ** 2)
Ra_0 = ra0 * distal_l
Ra_1 = ra1 * medial_l
Ra_2 = ra2 * proximal_l
# AHP patrameters
tau_ahp = 45*ms
g_ahp = 2*nS
# Synaptic current equations @ SOMA
eq_soma = Equations('''
I_synS = I_gaba_g - I_inj + I_Sahp : amp
I_Sahp : amp
dI_Sahp/dt = (g_ahp*(vm-El_soma)-I_Sahp)/tau_ahp : amp
I_gaba_g = g_gaba*(vm - E_gaba)*s_gaba_g : amp
s_gaba_g : 1
I_inj : amp
''')
# Synaptic current equations @ dendrites
eq_dend = Equations('''
I_synD = I_nmda_g + I_ampa_g + I_gaba_g - I_inj : amp
I_nmda_g = g_nmda*(vm - E_nmda)*s_nmda_g/(1.0 + eta*Mg*exp(-gama*vm)) : amp
s_nmda_g : 1
I_ampa_g = g_ampa*(vm - E_ampa)*s_ampa_g : amp
s_ampa_g : 1
I_gaba_g = g_gaba*(vm - E_gaba)*s_gaba_g : amp
s_gaba_g : 1
I_inj : amp
''')
# Soma equation
eqs_soma = MembraneEquation(Cm * area_soma)
eqs_soma += leak_current(gl * area_soma, El_soma)
eqs_soma += IonicCurrent('I = I_synS : amp')
eqs_soma += eq_soma
# Dendrite equations
eqs_dendrite = {}
for seg in xrange(Nseg):
eqs_dendrite[seg] = MembraneEquation(Cm_dend * area_dend[seg])
eqs_dendrite[seg] += leak_current(gl_dend * area_dend[seg], El_dend, current_name = 'Il')
eqs_dendrite[seg] += IonicCurrent('I = I_synD: amp') + eq_dend
granule_eqs = Compartments({'soma' : eqs_soma,
'dend001': eqs_dendrite[0],
'dend002': eqs_dendrite[1],
'dend02': eqs_dendrite[2],
'dend101': eqs_dendrite[3],
'dend102': eqs_dendrite[4],
'dend12': eqs_dendrite[5],
'dend201': eqs_dendrite[6],
'dend202': eqs_dendrite[7],
'dend22': eqs_dendrite[8]})
granule_eqs.connect('dend001', 'dend02', Ra_1)
granule_eqs.connect('dend002', 'dend02', Ra_1)
granule_eqs.connect('dend02', 'soma', Ra_2)
granule_eqs.connect('dend101', 'dend12', Ra_1)
granule_eqs.connect('dend102', 'dend12', Ra_1)
granule_eqs.connect('dend12', 'soma', Ra_2)
granule_eqs.connect('dend201', 'dend22', Ra_1)
granule_eqs.connect('dend202', 'dend22', Ra_1)
granule_eqs.connect('dend22', 'soma', Ra_2)
granule = NeuronGroup(N_granule, model = granule_eqs, threshold = 'vm_soma > v_th',
reset = 'vm_soma = v_reset; I_Sahp_soma += 0.0450*nA',
refractory = 20 * ms, compile = True, freeze = True)
# Initialization of membrane potential
granule.vm_soma = El_soma
# 1st branch
granule.vm_dend001 = El_dend
granule.vm_dend002 = El_dend
granule.vm_dend02 = El_dend
# 2nd branch
granule.vm_dend101 = El_dend
granule.vm_dend102 = El_dend
granule.vm_dend12 = El_dend
# 3rd branch
granule.vm_dend201 = El_dend
granule.vm_dend202 = El_dend
granule.vm_dend22 = El_dend
#==============================================================================
# ***************************** I N P U T S ***********************************
#==============================================================================
N_pre = NumberOfInputs
#==========================================================================
tspike = 500
spiketimes = [(0, tspike * ms)]
spiketimes = synchronous_input(spiketimes, N_pre)
#==========================================================================
# Only 1st tip synapse! Reproduce results of Remy, 2009
P001 = SpikeGeneratorGroup(N_pre, spiketimes)
#==============================================================================
# ****************************S Y N A P S E S**********************************
#==============================================================================
# The NMDA/AMPA synapses
# DISTAL SYNAPSES
# Synapses at 0 - branch
nmda_eqs_001 = '''
dj_001/dt = -j_001 / t_nmda_decay + alpha_nmda * x_001 * (1 - j_001) : 1
dx_001/dt = -x_001 / t_nmda_rise : 1
wNMDA_001 : 1
'''
synNMDA_001 = Synapses(P001, granule, model = nmda_eqs_001, pre = 'x_001 = wNMDA_001', implicit=True, freeze=True)
granule.s_nmda_g_dend001 = synNMDA_001.j_001
synNMDA_001[:,:] = True
synNMDA_001.wNMDA_001[:, :] = 1.0
synNMDA_001.delay[:, :] = 3 * ms
ampa_eqs_001 = '''
dy_001/dt = -y_001 / t_ampa_decay + alpha_ampa * h_001 * (1 - y_001) : 1
dh_001/dt = -h_001 / t_ampa_rise : 1
wAMPA_001 : 1
'''
synAMPA_001 = Synapses(P001, granule, model = ampa_eqs_001, pre = 'h_001 = wAMPA_001', implicit=True, freeze=True)
granule.s_ampa_g_dend001 = synAMPA_001.y_001
synAMPA_001[:,:] = True
synAMPA_001.wAMPA_001[:, :] = 1.0
synAMPA_001.delay[:, :] = 3 * ms
#==============================================================================
#==============================================================================
#***************************** M O N I T O R S ********************************
#==============================================================================
M0 = MultiStateMonitor(granule, record = True)
#==============================================================================
#==============================================================================
#**************************S I M U L A T I O N ********************************
#==============================================================================
#Simulation run
total_simt = 1000 * ms
print "\nSimulation running... "
run(total_simt, report='text')
rest = int(tspike/(defaultclock.dt/ms))
V_soma = (1000*(max(M0['vm_soma'][0][3000:]) - M0['vm_soma'][0][rest]))
print V_soma
V_peak001 = (1000*(max(M0['vm_dend001'][0][3000:]) - M0['vm_dend001'][0][rest]))
V_peak002 = (1000*(max(M0['vm_dend002'][0][3000:]) - M0['vm_dend002'][0][rest]))
V_peak02 = (1000*(max(M0['vm_dend02'][0][3000:]) - M0['vm_dend02'][0][rest]))
V_peak101 = (1000*(max(M0['vm_dend101'][0][3000:]) - M0['vm_dend101'][0][rest]))
V_peak102 = (1000*(max(M0['vm_dend102'][0][3000:]) - M0['vm_dend102'][0][rest]))
V_peak12 = (1000*(max(M0['vm_dend12'][0][3000:]) - M0['vm_dend12'][0][rest]))
V_peak201 = (1000*(max(M0['vm_dend201'][0][3000:]) - M0['vm_dend201'][0][rest]))
V_peak202 = (1000*(max(M0['vm_dend202'][0][3000:]) - M0['vm_dend202'][0][rest]))
V_peak22 = (1000*(max(M0['vm_dend22'][0][3000:]) - M0['vm_dend22'][0][rest]))
V_peak = [V_soma, V_peak001, V_peak002, V_peak02,
V_peak101, V_peak102, V_peak12,
V_peak201, V_peak202, V_peak22]
np.save('Vpeak_6d_supralinear_single_'+str(NumberOfInputs), V_peak)