#==============================================================================
# Point neuron (exponential I&F model) with 12 dendrites - Control model.
#==============================================================================
from brian import *
from brian.library.ionic_currents import *
from brian.library.IF import *
import numpy as np
import time
import math
from brian.library.electrophysiology import *
import matplotlib.pyplot as plt
import scipy.io
doVisualise = 0
doData = 0
doSpikes = 0
#Iinjected = range(-50, 90, 10)
Iinjected = [-100]
#Iinjected = range(0, 260, 25)
Vpeak = np.zeros(len(Iinjected))
Spikes = np.zeros(len(Iinjected))
for jj in range(len(Iinjected)):
reinit(states = True)
clear(erase = True, all = True)
# Number of presynaptic neurons
N_pre = 1
N_granule = 1
# Parameters
gl = 0.00003 * siemens/(cm**2) # leakage conductance
gl_dend = 0.00001 * siemens/(cm**2) # leakage conductance
El_soma = -87.0 * mV # reversal-resting potential
El_dend = -82.0 * mV # reversal-resting potential
Cm = 1.0 * uF/(cm**2) # membrane capacitance
Cm_dend = 2.5 * uF/(cm**2) # membrane capacitance
v_th = -56.0 * mV # threshold potential
v_reset = -74.0 * mV # reset potential
# Morphology
# Soma
length_soma = 18.0 * um
diam_soma = 12.0 * um
area_soma = math.pi * diam_soma * length_soma
# Dendrites
Nseg = 21 # Number of dendritic compartments
Nbranch = 3 # Number of main branches
Ntips = 12 # Number of distal dendritic compartments
distal_l = 83.0 * um
medial_l = 83.0 * um
proximal_l = 83.0 * um
length_dend = [distal_l, distal_l, distal_l, distal_l, medial_l, medial_l, proximal_l]
length_dend *= Nbranch
distal_d = 0.80 * um
medial_d = 0.90 * um
proximal_d = 1.00 * um
diam_dend = [distal_d, distal_d, distal_d, distal_d, medial_d, medial_d, proximal_d]
diam_dend *= Nbranch
area_dend = [math.pi*x*y for x,y in zip(length_dend, diam_dend)]
# Synaptic Reversal Potentials
E_nmda = 0.0 * mV # NMDA reversal potential
E_ampa = 0.0 * mV # AMPA reversal potential
E_gaba = -86.0 * mV # GABA reversal potential
# AMPA/NMDA/GABA Model Parameters
gamma = 0.04 * mV**-1 # the steepness of Mg sensitivity of Mg unblock
Mg = 2.0 # [mM]--mili Molar - the extracellular Magnesium concentration
eta = 0.2 # [mM**-1] -1- mili Molar **(-1) - Magnesium sensitivity of unblock
alpha_nmda = 1.0 * ms**-1
alpha_ampa = 1.0 * ms**-1
alpha_gaba = 1.0 * ms**-1
# Input to Granule cells from Perforant Path(EC)/Mossy Cells (Remy model & experiments)
# Supralinear dendrites - working good, discussion with Yiota
g_ampa = 0.8066 * nS # AMPA maximum conductance
g_nmda = 1.08*g_ampa
t_nmda_decay = 50.0 * ms # NMDA decay time constant
t_nmda_rise = 0.33 * ms # NMDA rise time constant
t_ampa_decay = 2.5 * ms # AMPA decay time constant
t_ampa_rise = 0.1 * ms # AMPA rise time constant
# GABAergic Input from basket cells/hipp cells
# Basket
g_gaba = 10.0 * nS # GABA maximum conductance
t_gaba_decay = 6.4 * ms # GABA decay time constant
t_gaba_rise = 0.7 * ms # GABA rise time constant
# HIPP
g_gaba_d = 2.2 * nS # GABA maximum conductance
t_gaba_decay_d = 40.8 * ms # GABA decay time constant
t_gaba_rise_d = 2.5 * ms # GABA rise time constant
# Axial resistances
Ri = 210.0 * ohm * cm
ra0 = Ri * 4 / (pi * distal_d ** 2)
ra1 = Ri * 4 / (pi * medial_d ** 2)
ra2 = Ri * 4 / (pi * proximal_d ** 2)
Ra_0 = ra0 * distal_l
Ra_1 = ra1 * medial_l
Ra_2 = ra2 * proximal_l
# AHP patrameters
tau_ahp = 45*ms
g_ahp = 2.0*nS
# Synaptic current equations @ SOMA
eq_soma = Equations('''
I_synS = I_gaba_g - I_inj + I_Sahp : amp
I_Sahp : amp
dI_Sahp/dt = (g_ahp*(vm-El_soma)-I_Sahp)/tau_ahp : amp
I_gaba_g = g_gaba*(vm - E_gaba)*s_gaba_g : amp
s_gaba_g : 1
I_inj : amp
clamp : 1
''')
# Synaptic current equations @ dendrites
eq_dend = Equations('''
I_synD = I_nmda_g + I_ampa_g + I_gaba_g - I_inj : amp
I_nmda_g = g_nmda*(vm - E_nmda)*s_nmda_g/(1.0 + eta*Mg*exp(-gamma*vm)) : amp
s_nmda_g : 1
I_ampa_g = g_ampa*(vm - E_ampa)*s_ampa_g : amp
s_ampa_g : 1
I_gaba_g = g_gaba_d*(vm - E_gaba)*s_gaba_g : amp
s_gaba_g : 1
I_inj : amp
''')
# Soma equation
eqs_soma = MembraneEquation(Cm * area_soma)
eqs_soma += leak_current(gl * area_soma, El_soma)
eqs_soma += IonicCurrent('I = I_synS : amp')
eqs_soma += eq_soma
# Dendrite equations
eqs_dendrite = {}
for seg in xrange(Nseg):
eqs_dendrite[seg] = MembraneEquation(Cm_dend * area_dend[seg])
eqs_dendrite[seg] += leak_current(gl_dend * area_dend[seg], El_dend, current_name = 'Il')
eqs_dendrite[seg] += IonicCurrent('I = I_synD: amp') + eq_dend
granule_eqs = Compartments({'soma' : eqs_soma,
'dend001': eqs_dendrite[0],
'dend002': eqs_dendrite[1],
'dend011': eqs_dendrite[2],
'dend012': eqs_dendrite[3],
'dend00': eqs_dendrite[4],
'dend01': eqs_dendrite[5],
'dend0': eqs_dendrite[6],
'dend101': eqs_dendrite[7],
'dend102': eqs_dendrite[8],
'dend111': eqs_dendrite[9],
'dend112': eqs_dendrite[10],
'dend10': eqs_dendrite[11],
'dend11': eqs_dendrite[12],
'dend1': eqs_dendrite[13],
'dend201': eqs_dendrite[14],
'dend202': eqs_dendrite[15],
'dend211': eqs_dendrite[16],
'dend212': eqs_dendrite[17],
'dend20': eqs_dendrite[18],
'dend21': eqs_dendrite[19],
'dend2': eqs_dendrite[20]})
granule_eqs.connect('dend001', 'dend00', Ra_0)
granule_eqs.connect('dend002', 'dend00', Ra_0)
granule_eqs.connect('dend011', 'dend01', Ra_0)
granule_eqs.connect('dend012', 'dend01', Ra_0)
granule_eqs.connect('dend00', 'dend0', Ra_1)
granule_eqs.connect('dend01', 'dend0', Ra_1)
granule_eqs.connect('dend0', 'soma', Ra_2)
granule_eqs.connect('dend101', 'dend10', Ra_0)
granule_eqs.connect('dend102', 'dend10', Ra_0)
granule_eqs.connect('dend111', 'dend11', Ra_0)
granule_eqs.connect('dend112', 'dend11', Ra_0)
granule_eqs.connect('dend10', 'dend1', Ra_1)
granule_eqs.connect('dend11', 'dend1', Ra_1)
granule_eqs.connect('dend1', 'soma', Ra_2)
granule_eqs.connect('dend201', 'dend20', Ra_0)
granule_eqs.connect('dend202', 'dend20', Ra_0)
granule_eqs.connect('dend211', 'dend21', Ra_0)
granule_eqs.connect('dend212', 'dend21', Ra_0)
granule_eqs.connect('dend20', 'dend2', Ra_1)
granule_eqs.connect('dend21', 'dend2', Ra_1)
granule_eqs.connect('dend2', 'soma', Ra_2)
granule = NeuronGroup(N_granule, model = granule_eqs, threshold = 'vm_soma > v_th',
reset = 'vm_soma = v_reset; I_Sahp_soma += 0.0450*nA',
refractory = 20 * ms, compile = True, freeze = True)
# Initialization of membrane potential
granule.vm_soma = El_soma
# 1st branch
granule.vm_dend001 = El_dend
granule.vm_dend002 = El_dend
granule.vm_dend011 = El_dend
granule.vm_dend012 = El_dend
granule.vm_dend00 = El_dend
granule.vm_dend01 = El_dend
granule.vm_dend0 = El_dend
# 2nd branch
granule.vm_dend101 = El_dend
granule.vm_dend102 = El_dend
granule.vm_dend111 = El_dend
granule.vm_dend112 = El_dend
granule.vm_dend10 = El_dend
granule.vm_dend11 = El_dend
granule.vm_dend1 = El_dend
# 3rd branch
granule.vm_dend201 = El_dend
granule.vm_dend202 = El_dend
granule.vm_dend211 = El_dend
granule.vm_dend212 = El_dend
granule.vm_dend20 = El_dend
granule.vm_dend21 = El_dend
granule.vm_dend2 = El_dend
#======================================================================
#======================================================================
# Monitors
S = SpikeMonitor(granule)
M0 = MultiStateMonitor(granule, record = True)
# M2 = MultiStateMonitor(granule, {'I_Sahp_soma'}, record = True)
M3 = MultiStateMonitor(granule, {'I_ampa_g_dend00'+str(1),\
'I_nmda_g_dend00'+str(1), 'I_gaba_g_soma', 'I_synD_dend00'+str(1),\
'I_inj_soma', 'I_Sahp_soma','I_gaba_g_dend00'+str(1)}, record = True)
#======================================================================
#==============================================================================
#**************************S I M U L A T I O N *************************
#==============================================================================
#Simulation run
simt = 200 * ms
total_simt = 10*simt
rateA = 0 * Hz
rateB = 20 * Hz
# @network_operation
# def apply_soma_injections():
# if (defaultclock.t>300 * ms) and (defaultclock.t<=1300*ms):
# granule.I_inj_soma = Iinjected[jj]*pA
# else:
# granule.I_inj_soma = 0* pA
print "Simulation running..."
start_time = time.time()
run(300*ms, report='text')
granule.I_inj_soma = Iinjected[jj]*pA
run(1000*ms, report='text')
granule.I_inj_soma = 0*pA
run(200*ms, report='text')
duration = time.time() - start_time
print "Number of somatic spikes: " + str(S.nspikes)
print
print "Simulation time: ", duration, "seconds"
if Iinjected[jj] >= 0:
Vpeak[jj] = 1000*(max(M0['vm_soma'][0][10000:15000]) - M0['vm_soma'][0][2999]) # in mvolts
print
print Vpeak
else:
sag_ratio = (El_soma/volt - M0['vm_soma'][0][12000])/(El_soma/volt - min(M0['vm_soma'][0]))
R_input = ((El_soma/volt - M0['vm_soma'][0][12000])*volt) / (-Iinjected[jj] * pA)
R_input_d = ((El_dend/volt - M0['vm_dend00'][0][12000])*volt) / (-Iinjected[jj] * pA)
Vpeak[jj] = 1000*(min(M0['vm_soma'][0][10000:15000]) - M0['vm_soma'][0][2999]) # in mvolt
print
print "Sag ratio: "+str(sag_ratio), "Rin: " + str(R_input), "Rind: " + str(R_input_d)
Spikes[jj] = S.nspikes
#==============================================================================
#**************************V I S U A L I Z A T I O N *************************
#==============================================================================
total_simt = 1400 * ms
step = 500
if doData == 1:
np.save('Granule_Voltage', [Vpeak, Iinjected])
fig = figure(1)
plot(Iinjected, Vpeak, '.')
xlabel('Iinj (pA)')
ylabel('Peak voltage from rest (mV)')
ax = gca()
ax.spines['left'].set_position('zero')
ax.spines['right'].set_color('none')
ax.spines['bottom'].set_position('zero')
ax.spines['top'].set_color('none')
ax.spines['left'].set_smart_bounds(True)
ax.spines['bottom'].set_smart_bounds(True)
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.xaxis.set_label_text('I (pA)')
ax.xaxis.set_label_coords(1, .26)
ax.yaxis.set_label_text('V (mV)')
ax.yaxis.set_label_coords(0.22, 0.8)
ax.yaxis.get_label().set_rotation('horizontal')
savefig('granuleCell_12dendrites.eps', format = 'eps', bbox_inches = 'tight', dpi = 1200)
# savefig('granuleCell_12dendrites.svg', format = 'svg', bbox_inches = 'tight', dpi = 1200)
if doSpikes == 1:
np.save ('Granule_Spikes', [Spikes, Iinjected])
fig = figure(2)
ax = plt.subplot(111)
ax.plot(Iinjected, Spikes, '-o')
xlabel('Current injection (pA)', fontsize = 16)
ylabel('Firing frequency (Hz)', fontsize = 16)
xticks(range(0, 260, 50))
zed = [tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks()]
zed = [tick.label.set_fontsize(14) for tick in ax.xaxis.get_major_ticks()]
# Hide the right and top spines
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
# Only show ticks on the left and bottom spines
ax.yaxis.set_ticks_position('left')
ax.xaxis.set_ticks_position('bottom')
savefig('granule_FiringRates.eps', format = 'eps', bbox_inches='tight', dpi = 1200)
# savefig('granule_FiringRates.svg', format = 'svg', bbox_inches='tight', dpi = 1200)
scipy.io.savemat('granule_Spikes.mat', dict(x=Iinjected, y=Spikes))
plt.show()
matplotlib.rcParams['pdf.fonttype'] = 42
if doVisualise == 1:
fig = figure(1)
vm_soma = M0['vm_soma'][0]
for _,t in S.spikes:
i_spike = int(t / defaultclock.dt)
vm_soma[i_spike] = (v_th + 80*mV)
plot(M0['vm_soma'].times / ms, vm_soma / mV)
ylabel('V [mV]', fontsize = 16)
xlabel('Time [ms]', fontsize = 16)
ax = gca()
zed = [tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks()]
zed = [tick.label.set_fontsize(14) for tick in ax.xaxis.get_major_ticks()]
ax.plot([1550, 1550], [0,20], linewidth = 1.6, color = 'blue')
ax.plot([1550,2050], [0, 0], linewidth = 1.6, color = 'blue')
# Hide the right and top spines
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
# Only show ticks on the left and bottom spines
ax.yaxis.set_ticks_position('left')
ax.xaxis.set_ticks_position('bottom')
title('Iinjected = '+ str(Iinjected[jj])+' pA', fontsize = 18)
scipy.io.savemat('granule_voltageTrace.mat', dict(x=M0.times / ms, y=vm_soma / mV))
if Iinjected[jj] > 0:
savefig('Granule12d_voltageTrace.eps', format='eps', bbox_inches='tight', dpi = 1200)
else:
savefig('Granule12d_voltageTrace_negative.eps', format='eps', bbox_inches='tight', dpi = 1200)
# savefig('Granule12d_voltageTrace.svg', format='svg', bbox_inches='tight', dpi = 1200)
fig = figure(2)
for i in range(size(granule)):
plot(M3['I_inj_soma'].times / ms, M3['I_inj_soma'][i] / pA)
ylabel('I_inj (pA)')
xlabel('time (ms)')
show()
##==============================================================================