#==============================================================================
# Point neuron (I&F model). The model simulates AMPA, NMDA and
# GABA mechanisms. This script is used as a simple neuronal model for
# comparison purposes
#==============================================================================
from brian import *
from brian.library.ionic_currents import *
from brian.library.IF import *
import numpy as np
import time
import math
from brian.library.electrophysiology import *
reinit(states = True)
clear(erase = True, all = True)
def synchronous_input(A, N_pre):
C = []
for jj in range(len(A)):
for ll in xrange(N_pre):
B = list(A[jj])
B[0] = ll
B = tuple(B)
C.append(B)
C.sort(key = lambda tup: tup[1])
return C
I_injected = range(-100, 210, 20)
I_injected = [0]
Spikes = np.zeros(len(I_injected))
Vpeak = np.zeros(len(I_injected))
for i in range(len(I_injected)):
# print
# print "# of synapses: " + str(i)
# print
reinit(states = True)
clear(erase = True, all = True)
defaultclock.dt = 0.1 * ms
# Number of presynaptic neurons
N_pre = 1
N_basket = 1
# Parameters
gl_b = 18.054 * nS # leakage conductance
El_b = -52 * mV # reversal-resting potential
Cm_b = 0.1793 * nF # membrane capacitance
v_th_b = -39 * mV # threshold potential
v_reset_b = -45 * mV # reset potential
DeltaT_b = 2 * mV # slope factor
# Morphology
# Soma
# length_basket = (20 + 3500) * um
# diam_basket = 0.9 * um
# area_basket = math.pi * diam_basket * length_basket
# Synaptic Kinetics
E_nmda = 0 * mV # NMDA reversal potential
E_ampa = 0 * mV # AMPA reversal potential
E_gaba = -70 * mV # GABA reversal potential
g_ampa = 0.38 * nS # AMPA maximum conductance
g_nmda = 1.3 * nS # NMDA maximum conductance
g_gaba = 1.6 * nS # GABA maximum conductance
t_nmda_decay = 130 * ms # NMDA decay time constant
t_nmda_rise = 10 * ms # NMDA rise time constant
t_ampa_decay = 4.2 * ms # AMPA decay time constant
t_ampa_rise = 1.2 * ms # AMPA rise time constant
t_gaba_decay = 5.5 * ms # GABA decay time constant
t_gaba_rise = 0.26 * ms # GABA rise time constant
gama = 0.072 * mV**-1
alpha_nmda = 0.5 * ms**-1
alpha_ampa = 1 * ms**-1
alpha_gaba = 1 * ms**-1
# Synaptic current equations
eq_soma_b = Equations('''
I_syn_b = I_nmda + I_ampa + I_gaba - I_inj - clamp*i_inj : amp
I_nmda = g_nmda*(vm - E_nmda)*s_nmda*1./(1 + exp(-gama*vm)/3.57) : amp
I_ampa = g_ampa*(vm - E_ampa)*s_ampa : amp
I_gaba = g_gaba*(vm - E_gaba)*s_gaba : amp
I_inj : amp
s_nmda : 1
s_ampa : 1
s_gaba : 1
clamp : 1
''')
# Brette-Gerstner
basket_eqs = Brette_Gerstner(Cm_b, gl_b, El_b, v_th_b, DeltaT, tauw = 100 * ms, a = .1 * nS)
basket_eqs += IonicCurrent('I = I_syn_b : amp')
basket_eqs += eq_soma_b
basket_eqs += voltage_clamp(v_cmd = -70*mV)
basket = NeuronGroup(N_basket, model = basket_eqs, threshold = 'vm > v_th_b',
reset = AdaptiveReset(Vr=v_reset_b, b = 0.0205*nA),
refractory = 2 * ms, compile = True)
# Initialization of membrane potential
basket.vm = El_b
basket.clamp = 1
#==========================================================================
# Input stochastic for each run
P0 = PoissonGroup(N_pre)
tspike = 500 * ms
spiketimes = [(0, tspike)]
time_int = 0.1 * ms
# for dummy_ii in xrange(20):
# spiketimes.append((0, 500*ms + time_int))
# time_int += 0.1 * ms
spiketimes = synchronous_input(spiketimes, N_pre)
# spiketimes = [(ii, tspike) for ii in xrange(N_pre)]
P0 = SpikeGeneratorGroup(N_pre, spiketimes)
#==========================================================================
#==========================================================================
# The NMDA/AMPA synapses
# Synapses at 1st branch
nmda_eqs = '''
dj/dt = -j / t_nmda_decay + alpha_nmda * x * (1 - j) : 1
dx/dt = -x / t_nmda_rise : 1
wNMDA : 1
'''
syn_NMDA = Synapses(P0, basket, model = nmda_eqs, pre = 'x += wNMDA', implicit=True, freeze=True)
basket.s_nmda = syn_NMDA.j
syn_NMDA[:, :] = True
syn_NMDA.wNMDA[:, :] = 1.0
syn_NMDA.delay[:, :] = 3.3 * ms
ampa_eqs = '''
dy/dt = -y / t_ampa_decay + alpha_ampa * h * (1 - y) : 1
dh/dt = -h / t_ampa_rise : 1
wAMPA : 1
'''
syn_AMPA = Synapses(P0, basket, model = ampa_eqs, pre = 'h += wAMPA', implicit=True, freeze=True)
basket.s_ampa = syn_AMPA.y
syn_AMPA[:, :] = True
syn_AMPA.wAMPA[:, :] = 1.0
syn_AMPA.delay[:, :] = 3.3 * ms
#==========================================================================
#==========================================================================
# # Monitors
pre0 = SpikeMonitor(P0)
S = SpikeMonitor(basket)
M0 = StateMonitor(basket, 'vm', record = True)
M1 = StateMonitor(syn_NMDA, 'j', record = True)
M2 = StateMonitor(syn_NMDA, 'x', record = True)
M3 = StateMonitor(syn_AMPA, 'y', record = True)
M4 = StateMonitor(syn_AMPA, 'y', record = True)
M5 = StateMonitor(basket, 'I_gaba', record = True)
M6 = StateMonitor(basket, 'I_ampa', record = True)
M7 = StateMonitor(basket, 'I_nmda', record = True)
M8 = StateMonitor(basket, 'I_syn_b', record = True)
M9 = StateMonitor(basket, 'i_inj', record = True)
M10 = StateMonitor(basket, 'w', record = True)
#======================================================================
#======================================================================
# SIMULATION
#======================================================================
#Simulation run
simt = 200 * ms
total_simt = 5*simt
rateA = 0 * Hz
rateB = 40 * Hz
t_stim_init = 300
t_stim_end = 1300
# @network_operation
# def apply_soma_injections():
# if (defaultclock.t>t_stim_init * ms) and (defaultclock.t<=t_stim_end*ms):
# basket.I_inj = I_injected[i] * pA
# else:
# basket.I_inj = 0 * pA
#
# @network_operation
# def apply_poisson_rates():
# if (defaultclock.t>t_stim_init * ms) and (defaultclock.t<=t_stim_end*ms):
# P0.rate = rateB
# else:
# P0.rate = rateA
print "Simulation running..."
start_time = time.time()
run(total_simt)
duration = time.time() - start_time
print "Number of somatic spikes: " + str(S.nspikes)
print
print "Simulation time: ", duration, "seconds"
# if I_injected[i] < 0:
# print "Input Resistance: " + str((M0[0][22000] * volt - El_b)/(I_injected[i]*pA))
# print
# print "Sag ratio: " + str((M0[0][22000]*volt - El_b)/(min(M0[0])*volt - El_b))
# else:
# print "Slow AHP: " + str((min(M0[0]) * volt - El_b))
# print
#
#
# #peak voltage
# if I_injected[i] > 0:
# Vpeak[i] = 1000*(max(M0[0]) - El_b / volt) # in mvolts
# else:
# Vpeak[i] = 1000*(min(M0[0]) - El_b/ volt) # in mvolts
print "EPSC: " + str(min(M6[0]) * amp) # for AMPA
print "EPSC: " + str(min(M6[0] + min(M7[0])) * amp) # for NMDA + AMPA
##=============================================================================
# Visualization
doVisualise = 0
step = 500
if doVisualise == 1:
fig = figure(1)
subplot(211)
raster_plot(pre0)
ylabel('# of input cells')
xticks(range(0, int(total_simt/msecond) + step, step))
subplot(212)
raster_plot(S)
ylabel('# of basket cells')
xticks(range(0, int(total_simt/msecond) + step, step))
# savefig('raster_plots(2).png', bbox_inches='tight', dpi = 1080)
fig = figure(2)
vm_soma = M0[0]
for _,t in S.spikes:
i = int(t / defaultclock.dt)
vm_soma[i] = (El_b + 78*mV)
plot(M0.times / ms, vm_soma / mV)
ylabel('V_soma (mV)')
xlabel('time (ms)')
# savefig('basket_Iinj.png', bbox_inches='tight', dpi = 1080)
fig = figure(3)
for i in range(len(P0)):
plot(M1.times / ms, M1[i])
ylabel('NMDA')
xlabel('time (ms)')
fig = figure(4)
for i in range(len(P0)):
plot(M2.times / ms, M2[i])
ylabel('x NMDA')
xlabel('time (ms)')
fig = figure(5)
for i in range(len(P0)):
plot(M3.times / ms, M3[i])
ylabel('AMPA')
xlabel('time (ms)')
fig = figure(6)
for i in range(size(basket)):
plot(M5.times / ms, M5[i] / pA)
ylabel('I_gaba (pA)')
xlabel('time (ms)')
fig = figure(7)
for i in range(size(basket)):
plot(M6.times / ms, M6[i] / pA)
ylabel('I_ampa (pA)')
xlabel('time (ms)')
fig = figure(8)
for i in range(size(basket)):
plot(M7.times / ms, M7[i] / pA)
ylabel('I_nmda (pA)')
xlabel('time (ms)')
fig = figure(9)
for i in range(size(basket)):
plot(M8.times / ms, M8[i] / pA)
ylabel('I_syn (pA)')
xlabel('time (ms)')
fig = figure(10)
for i in range(size(basket)):
plot(M9.times / ms, M9[i] / pA)
ylabel('i_inj (pA)')
xlabel('time (ms)')
show()
doData = 0
if doData == 1:
fig = figure(1)
plot(I_injected, Vpeak, '.')
xlabel('Iinj (pA)')
ylabel('Peak voltage from rest (mV)')
ax = gca()
ax.spines['left'].set_position('zero')
ax.spines['right'].set_color('none')
ax.spines['bottom'].set_position('zero')
ax.spines['top'].set_color('none')
ax.spines['left'].set_smart_bounds(True)
ax.spines['bottom'].set_smart_bounds(True)
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.xaxis.set_label_text('I (pA)')
ax.xaxis.set_label_coords(1, .26)
ax.yaxis.set_label_text('V (mV)')
ax.yaxis.set_label_coords(0.22, 0.8)
ax.yaxis.get_label().set_rotation('horizontal')
# savefig('BasketCell.png', bbox_inches = 'tight', dpi = 1080)
##==============================================================================