TITLE KQT3
: kqt3 channels
: Wei 2005



UNITS {
    (mA) = (milliamp)
	(S) = (siemens)
	(mV) = (millivolt)
}


NEURON {
	SUFFIX kqt3
	USEION k READ ek WRITE ik
    RANGE gbar,g,m1,m2,m3,t1,t2,gg,s1,winf1,taus,tauw,svar2,war2,curr
	}


PARAMETER{
   ek (mV)
   celsius (degC)
   gbar=0.55 (S/cm2)
   
   va_kqt3=-12.6726 (mV)
   ka_kqt3=15.8008 (mV)
  
     
   p1tmskqt3=5503 (ms)
   p2tmskqt3=5345.4 (ms)
   p3tmskqt3=-0.02827 (1/mV)
   p4tmskqt3=-23.9 (mV)
   p5tmskqt3=4590.6 (ms)
   p6tmskqt3=-0.0357 (1/mV)
   p7tmskqt3=14.15   (mV)
  
   p1tmfkqt3=395.3 (ms)
   p2tmfkqt3=38.1 (mV)
   p3tmfkqt3=33.59 (mV)
   constkqt3=10 
   
   w1=0.49
   w2=0.51
   w3=1.084
   w4=28.78
   
   tw1=5.44 (ms)
   tw2=29.2 (ms)
   tw3=48.09 (mV)
   tw4=48.83 (mV)
    
   sq1=0.34
   sq2=0.66
   sq3=45.3
   sq4=12.3
   tsq1=5000
   ckqt3=0.1
  
}

ASSIGNED{
		 ik (mA/cm2)
		 curr (mA/cm2)
		 g (S/cm2)
		 v (mV)
		m1
		m2
		m3
		t1 (ms)
		t2 (ms)
		s1
		winf1
		svar2
		wvar2
		taus 
		tauw
		gg
}	

STATE {
	mf ms s w
}


BREAKPOINT {
	SOLVE states METHOD cnexp
	g=gbar*((0.3*mf)+(0.7*ms))
	m1=mf
	m2=ms
	m3=minf(v)
	t1=mtauf(v)
	t2=mtaus(v)
	winf1=winf(v)
	s1=sinf(v)
	svar2=s
	wvar2=w
	taus=tsq1*ckqt3
	tauw=tw(v)
	gg=(0.3*mf)+(0.7*ms)
	 curr=gbar*((0.3*mf)+(0.7*ms))*s*w*(v-ek)
	ik = gbar*((0.3*mf)+(0.7*ms))*s*w*(v-ek)

}


INITIAL {
	
	mf=minf(v)
	ms=minf(v)
    w=winf(v)
	s=sinf(v)
}

DERIVATIVE states {     
        mf' = (minf(v) - mf)/mtauf(v)
		ms'=(minf(v)-ms)/mtaus(v)
		s'=(sinf(v)-s)/500
		w'=(winf(v)-w)/tw(v)

	}

FUNCTION minf(v (mV)) { 
        minf=1/(1+exp(-(v-va_kqt3+constkqt3)/ka_kqt3))
	}


FUNCTION mtauf(v (mV)){

        mtauf=(p1tmfkqt3/(1+((v+p2tmfkqt3)/p3tmfkqt3)^2))*ckqt3

		}
FUNCTION mtaus(v (mV)){

		mtaus=(p1tmskqt3-p2tmskqt3/(1+10^(p3tmskqt3*(p4tmskqt3-v)))-p5tmskqt3/(1+10^(p6tmskqt3*(v+p7tmskqt3))))*ckqt3
	}

FUNCTION winf(v (mV)){
winf=w1+(w2/(1+exp((v+w3)/w4)))
}

FUNCTION sinf(v (mV)){
sinf=sq1+(sq2/(1+exp((v+sq3)/sq4)))
}

FUNCTION tw(v (mV)){
tw=(tw1+(tw2/(1+pow((v+tw3)/tw4,2))))*ckqt3
}