<NervousSystem> <NeuralModules> <NeuralModule> <ModuleName>FastNeuralNet</ModuleName> <ModuleFileName>FastNeuralNet_vc7.dll</ModuleFileName> <Type>FastNeuralModule</Type> <NeuralNetFile>Crayfish.afnn</NeuralNetFile> </NeuralModule> <NeuralModule> <ModuleName>RealisticNeuralNet</ModuleName> <ModuleFileName>RealisticNeuralNet_vc7.dll</ModuleFileName> <Type>RealisticNeuralModule</Type> <NeuralNetFile>Crayfish.arnn</NeuralNetFile> </NeuralModule> </NeuralModules> <Adapters> <Adapter> <Type>NodeToNode</Type> <SourceModule>FastNeuralNet</SourceModule> <SourceNodeID>2</SourceNodeID> <SourceDataType>FiringFrequency</SourceDataType> <TargetModule>RealisticNeuralNet</TargetModule> <TargetNodeID>2</TargetNodeID> <Gain> <Type>Sigmoid</Type> <UseLimits>True</UseLimits> <LowerLimit>0.7</LowerLimit> <UpperLimit>1</UpperLimit> <LowerOutput>0</LowerOutput> <UpperOutput>0</UpperOutput> <A>0.4</A> <B>1e-07</B> <C>300</C> <D>0</D> </Gain> </Adapter> <Adapter> <Type>NodeToPhysical</Type> <SourceModule>RealisticNeuralNet</SourceModule> <SourceNodeID>1</SourceNodeID> <SourceDataType>MembraneVoltage</SourceDataType> <TargetBodyType>RigidBody</TargetBodyType> <TargetBodyID>8a428047-52e6-4d99-907f-3cd51c3b9ef8</TargetBodyID> <Gain> <Type>Polynomial</Type> <UseLimits>False</UseLimits> <A>0</A> <B>0</B> <C>1</C> <D>0</D> </Gain> </Adapter> <Adapter> <Type>NodeToPhysical</Type> <SourceModule>RealisticNeuralNet</SourceModule> <SourceNodeID>1</SourceNodeID> <SourceDataType>MembraneVoltage</SourceDataType> <TargetBodyType>RigidBody</TargetBodyType> <TargetBodyID>70c6fd45-667c-4067-9eb7-3e946432a35e</TargetBodyID> <Gain> <Type>Polynomial</Type> <UseLimits>False</UseLimits> <A>0</A> <B>0</B> <C>1</C> <D>0</D> </Gain> </Adapter> <Adapter> <Type>NodeToPhysical</Type> <SourceModule>RealisticNeuralNet</SourceModule> <SourceNodeID>6</SourceNodeID> <SourceDataType>MembraneVoltage</SourceDataType> <TargetBodyType>RigidBody</TargetBodyType> <TargetBodyID>18ce8858-4e89-4413-bc37-4f9a67adf22c</TargetBodyID> <Gain> <Type>Polynomial</Type> <UseLimits>False</UseLimits> <A>0</A> <B>0</B> <C>1</C> <D>0</D> </Gain> </Adapter> <Adapter> <Type>NodeToPhysical</Type> <SourceModule>RealisticNeuralNet</SourceModule> <SourceNodeID>7</SourceNodeID> <SourceDataType>MembraneVoltage</SourceDataType> <TargetBodyType>RigidBody</TargetBodyType> <TargetBodyID>d7b1e060-c25b-4883-8110-755571fd8312</TargetBodyID> <Gain> <Type>Polynomial</Type> <UseLimits>False</UseLimits> <A>0</A> <B>0</B> <C>1</C> <D>0</D> </Gain> </Adapter> <Adapter> <Type>NodeToPhysical</Type> <SourceModule>RealisticNeuralNet</SourceModule> <SourceNodeID>2</SourceNodeID> <SourceDataType>MembraneVoltage</SourceDataType> <TargetBodyType>RigidBody</TargetBodyType> <TargetBodyID>1cd6a46f-e2f0-4d4d-b61b-562fdeb56a56</TargetBodyID> <Gain> <Type>Polynomial</Type> <UseLimits>False</UseLimits> <A>0</A> <B>0</B> <C>1</C> <D>0</D> </Gain> </Adapter> <Adapter> <Type>NodeToNode</Type> <SourceModule>FastNeuralNet</SourceModule> <SourceNodeID>0</SourceNodeID> <SourceDataType>FiringFrequency</SourceDataType> <TargetModule>RealisticNeuralNet</TargetModule> <TargetNodeID>8</TargetNodeID> <Gain> <Type>Sigmoid</Type> <UseLimits>True</UseLimits> <LowerLimit>0.3</LowerLimit> <UpperLimit>0.6</UpperLimit> <LowerOutput>0</LowerOutput> <UpperOutput>0</UpperOutput> <A>0.3</A> <B>3e-08</B> <C>300</C> <D>0</D> </Gain> </Adapter> <Adapter> <Type>NodeToNode</Type> <SourceModule>FastNeuralNet</SourceModule> <SourceNodeID>0</SourceNodeID> <SourceDataType>FiringFrequency</SourceDataType> <TargetModule>RealisticNeuralNet</TargetModule> <TargetNodeID>1</TargetNodeID> <Gain> <Type>Sigmoid</Type> <UseLimits>True</UseLimits> <LowerLimit>0.7</LowerLimit> <UpperLimit>1</UpperLimit> <LowerOutput>0</LowerOutput> <UpperOutput>0</UpperOutput> <A>0.4</A> <B>1e-07</B> <C>300</C> <D>0</D> </Gain> </Adapter> <Adapter> <Type>NodeToPhysical</Type> <SourceModule>RealisticNeuralNet</SourceModule> <SourceNodeID>6</SourceNodeID> <SourceDataType>MembraneVoltage</SourceDataType> <TargetBodyType>RigidBody</TargetBodyType> <TargetBodyID>58185988-05fa-4c7c-b7e3-a76c9d5a56af</TargetBodyID> <Gain> <Type>Polynomial</Type> <UseLimits>False</UseLimits> <A>0</A> <B>0</B> <C>1</C> <D>0</D> </Gain> </Adapter> <Adapter> <Type>NodeToNode</Type> <SourceModule>FastNeuralNet</SourceModule> <SourceNodeID>1</SourceNodeID> <SourceDataType>FiringFrequency</SourceDataType> <TargetModule>RealisticNeuralNet</TargetModule> <TargetNodeID>5</TargetNodeID> <Gain> <Type>Sigmoid</Type> <UseLimits>True</UseLimits> <LowerLimit>0.7</LowerLimit> <UpperLimit>1</UpperLimit> <LowerOutput>0</LowerOutput> <UpperOutput>0</UpperOutput> <A>0.4</A> <B>1e-07</B> <C>300</C> <D>0</D> </Gain> </Adapter> <Adapter> <Type>NodeToPhysical</Type> <SourceModule>RealisticNeuralNet</SourceModule> <SourceNodeID>1</SourceNodeID> <SourceDataType>MembraneVoltage</SourceDataType> <TargetBodyType>RigidBody</TargetBodyType> <TargetBodyID>3df28b50-0060-4da4-9a37-d2af9326eca0</TargetBodyID> <Gain> <Type>Polynomial</Type> <UseLimits>False</UseLimits> <A>0</A> <B>0</B> <C>1</C> <D>0</D> </Gain> </Adapter> <Adapter> <Type>NodeToPhysical</Type> <SourceModule>RealisticNeuralNet</SourceModule> <SourceNodeID>5</SourceNodeID> <SourceDataType>MembraneVoltage</SourceDataType> <TargetBodyType>RigidBody</TargetBodyType> <TargetBodyID>07ded226-3cad-4002-a7a5-a81e0d0247f3</TargetBodyID> <Gain> <Type>Polynomial</Type> <UseLimits>False</UseLimits> <A>0</A> <B>0</B> <C>1</C> <D>0</D> </Gain> </Adapter> <Adapter> <Type>NodeToPhysical</Type> <SourceModule>RealisticNeuralNet</SourceModule> <SourceNodeID>6</SourceNodeID> <SourceDataType>MembraneVoltage</SourceDataType> <TargetBodyType>RigidBody</TargetBodyType> <TargetBodyID>5c6a61ea-75f5-464a-b513-65bda492d5a1</TargetBodyID> <Gain> <Type>Polynomial</Type> <UseLimits>False</UseLimits> <A>0</A> <B>0</B> <C>1</C> <D>0</D> </Gain> </Adapter> <Adapter> <Type>NodeToPhysical</Type> <SourceModule>RealisticNeuralNet</SourceModule> <SourceNodeID>6</SourceNodeID> <SourceDataType>MembraneVoltage</SourceDataType> <TargetBodyType>RigidBody</TargetBodyType> <TargetBodyID>a158b676-1b91-42d5-92e5-314141587fa9</TargetBodyID> <Gain> <Type>Polynomial</Type> <UseLimits>False</UseLimits> <A>0</A> <B>0</B> <C>1</C> <D>0</D> </Gain> </Adapter> <Adapter> <Type>NodeToPhysical</Type> <SourceModule>RealisticNeuralNet</SourceModule> <SourceNodeID>1</SourceNodeID> <SourceDataType>MembraneVoltage</SourceDataType> <TargetBodyType>RigidBody</TargetBodyType> <TargetBodyID>fb05d8b0-87e7-43e1-8ea7-2bf683913321</TargetBodyID> <Gain> <Type>Polynomial</Type> <UseLimits>False</UseLimits> <A>0</A> <B>0</B> <C>1</C> <D>0</D> </Gain> </Adapter> <Adapter> <Type>NodeToNode</Type> <SourceModule>FastNeuralNet</SourceModule> <SourceNodeID>2</SourceNodeID> <SourceDataType>FiringFrequency</SourceDataType> <TargetModule>RealisticNeuralNet</TargetModule> <TargetNodeID>0</TargetNodeID> <Gain> <Type>Sigmoid</Type> <UseLimits>True</UseLimits> <LowerLimit>0.3</LowerLimit> <UpperLimit>0.6</UpperLimit> <LowerOutput>0</LowerOutput> <UpperOutput>0</UpperOutput> <A>0.3</A> <B>3e-08</B> <C>300</C> <D>0</D> </Gain> </Adapter> <Adapter> <Type>NodeToPhysical</Type> <SourceModule>RealisticNeuralNet</SourceModule> <SourceNodeID>2</SourceNodeID> <SourceDataType>MembraneVoltage</SourceDataType> <TargetBodyType>RigidBody</TargetBodyType> <TargetBodyID>4aa84a92-74cf-4f45-81b5-98ede2cea4f5</TargetBodyID> <Gain> <Type>Polynomial</Type> <UseLimits>False</UseLimits> <A>0</A> <B>0</B> <C>1</C> <D>0</D> </Gain> </Adapter> <Adapter> <Type>NodeToPhysical</Type> <SourceModule>RealisticNeuralNet</SourceModule> <SourceNodeID>3</SourceNodeID> <SourceDataType>MembraneVoltage</SourceDataType> <TargetBodyType>RigidBody</TargetBodyType> <TargetBodyID>c832acde-40da-411b-ab7a-557281310be2</TargetBodyID> <Gain> <Type>Polynomial</Type> <UseLimits>False</UseLimits> <A>0</A> <B>0</B> <C>1</C> <D>0</D> </Gain> </Adapter> <Adapter> <Type>NodeToPhysical</Type> <SourceModule>RealisticNeuralNet</SourceModule> <SourceNodeID>2</SourceNodeID> <SourceDataType>MembraneVoltage</SourceDataType> <TargetBodyType>RigidBody</TargetBodyType> <TargetBodyID>23ee1704-6002-4e10-a47b-81a6d488e21d</TargetBodyID> <Gain> <Type>Polynomial</Type> <UseLimits>False</UseLimits> <A>0</A> <B>0</B> <C>1</C> <D>0</D> </Gain> </Adapter> <Adapter> <Type>NodeToPhysical</Type> <SourceModule>RealisticNeuralNet</SourceModule> <SourceNodeID>1</SourceNodeID> <SourceDataType>MembraneVoltage</SourceDataType> <TargetBodyType>RigidBody</TargetBodyType> <TargetBodyID>30641b72-ea06-429f-9c5c-96fc58fb2506</TargetBodyID> <Gain> <Type>Polynomial</Type> <UseLimits>False</UseLimits> <A>0</A> <B>0</B> <C>1</C> <D>0</D> </Gain> </Adapter> <Adapter> <Type>NodeToNode</Type> <SourceModule>FastNeuralNet</SourceModule> <SourceNodeID>1</SourceNodeID> <SourceDataType>FiringFrequency</SourceDataType> <TargetModule>RealisticNeuralNet</TargetModule> <TargetNodeID>4</TargetNodeID> <Gain> <Type>Sigmoid</Type> <UseLimits>True</UseLimits> <LowerLimit>0.3</LowerLimit> <UpperLimit>0.6</UpperLimit> <LowerOutput>0</LowerOutput> <UpperOutput>0</UpperOutput> <A>0.3</A> <B>3e-08</B> <C>300</C> <D>0</D> </Gain> </Adapter> </Adapters> </NervousSystem>