% By Liang Chen, May 12, 2021
% Updated on June 1, Sep. 8
% Oct. 25: bursting
% May 20, 2022
%
% Simulation of the network of Izhikevich neurons
% dimensional form of eqs.
% heterogeneous parameters with the Cauchy/Lorentzian distribution
%
% ref: Liang Chen, Sue Ann Campbell, Exact mean-field models for spiking
% neural networks with adaptation
% preprint: https://arxiv.org/abs/2203.08341
%
%=========================================================
tic
clc
clear
%% values of the parameters
parameters
vpeak = 200; vreset = -vpeak;
vinf = 200; % represent the infinity, vpeak-vreset=vinf=200 in [DumontErmentrout2017]
N = 10^3; % number of cells
%% Euler integration parameters
dt = 10^(-3);
tend =800;
time = 0:dt:tend;
%tend = Tend*k*abs(VR)/C; % Tend: dimensional; tend: dimensionless
%% heterogeneous parameter, Lorentzian distribution
mu = 0.12; % centre
hw = 0.02; % half width
% random generation
eta = cauchyrnd(mu,hw,N,1);
% or
% deterministic generation: typo in [Montbrio2015], "tan", not "atan"
% eta = zeros(N,1);
% for j=1:N
% eta(j) = mu + hw*tan(pi/2*(2*j-N-1)/(N+1));
% end
%% mean-field model
% Izh_mf, % Euler integration
Izh_mf_ode45 % ode45, efficient
%% network model
Izh_network3
%% save data:
save('Izh_mf_network.mat');
%% plot figures
fig_plot
toc
%% ============= The end ============