# Mean-field model of two populations of Izhikevich neurons # By Liang Chen, Nov.4, 2021 # # ref. [Nicola&Campbell2013]:Mean-field models for heterogeneous networks # of two-dimensional integrate and fire neurons # ref. [Nicola&Campbell2013]:Bifurcation of large networks of two dimensional integrate and fire neurons # numerical example 2 # user defined functions: gs1(sm1,sm2)=p1*gsyn11*sm1+(1-p1)*gsyn12*sm2 gs2(sm1,sm2)=p1*gsyn21*sm1+(1-p1)*gsyn22*sm2 # Population 1: drm1/dt=hw/pi+2*rm1*vm1-rm1*(gs1(sm1,sm2)+alpha) dvm1/dt=vm1^2-alpha*vm1+gs1(sm1,sm2)*(er-vm1)-pi^2*rm1^2-wm1+mu+Iext1 dwm1/dt=a1*(b*vm1-wm1)+wjump1*rm1 dsm1/dt=-sm1/tsyn+sjump*rm1 # Population 2: drm2/dt=hw/pi+2*rm2*vm2-rm2*(gs2(sm1,sm2)+alpha) dvm2/dt=vm2^2-alpha*vm2+gs2(sm1,sm2)*(er-vm2)-pi^2*rm2^2-wm2+mu+Iext2 dwm2/dt=a2*(b*vm2-wm2)+wjump2*rm2 dsm2/dt=-sm2/tsyn+sjump*rm2 # sm1 \in [0,1]: (the global flag doesn't work. E.g. when the applied current is big enough) Global 1 {sm1-1} {sm1=1} # sm2 \in [0,1]: Global 1 {sm2-1} {sm2=1} # p1 \in [0,1] Global 1 {p1-1} {p1=1} # parameters Par mu=0 par p1=0.8 par hw=0.02 # par a1=0.0077, a2=0.077 par wjump1=0.0189, wjump2=0.0095 par gsyn11=1.2308, gsyn12=1.2308 par gsyn21=1.2308, gsyn22=1.2308 Par Iext1=0, Iext2=0 par er=1, b=-0.0062, alpha=0.6215, sjump=1.2308, tsyn=2.6 # initial conditions rm1(0)=0, rm2(0)=0 vm1(0)=0, vm2(0)=0 wm1(0)=0, wm2(0)=0 sm1(0)=0, sm2(0)=0 @xplot=t, yplot=rm1, xlo=0, xhi=800, ylo=0, yhi=0.02, bell=0 @total=5000, dt=0.001, maxstor=2000000, bounds=1000000 @ ntst=150, npr=500, nmax=2000, ds=0.0001, dsmin=0.0001, dsmax=0.001, ncol=5 @ parmin=0, parmax=0.2, epsl=0.000001, epsu=0.000001, epss=0.000001 @ AUTOXMIN=0, AUTOXMAX=0.2, AUTOYMIN=0, AUTOYMAX=0.15 @ BUT=QUIT:fq, BUT=AUTO:fa Done