: modified by Jay Coggan
: High threshold potassium chanel from
: Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones
: Lu-Yang Wang, Li Gan, Ian D. Forsythe and Leonard K. Kaczmarek
: J. Physiol (1998), 501.9, pp. 183-194
NEURON {
SUFFIX HT
USEION k READ ek WRITE ik
RANGE gbar, g, ik
GLOBAL ninf, ntau, pinf, ptau, an, bn, ap, bp
}
: area in paper is 1000 (um2) so divide our density parameters by 10
UNITS {
(mV) = (millivolt)
(S) = (mho)
(mA) = (milliamp)
}
PARAMETER {
gbar = .15 (S/cm2)
gamma = .1
kan = .2120 (/ms)
ean = .04 (/mV)
kbn = .1974 (/ms)
ebn = 0 (/mV)
ek = -90 (mV)
:e_k = -90 (mV)
kap = .00713 (/ms)
eap = -.1942 (/mV)
kbp = .0935 (/ms)
ebp = .0058 (/mV)
}
ASSIGNED {
v (mV)
:ek (mV)
ik (mA/cm2)
ninf
ntau (ms)
pinf
ptau (ms)
an (/ms)
bn (/ms)
ap (/ms)
bp (/ms)
}
STATE {
n p
}
INITIAL {
rates(v)
n = ninf
p = pinf
}
BREAKPOINT {
SOLVE state METHOD cnexp
:ik = gbar*n^3*(1 - gamma + gamma*p)*(v - e_k)
ik = gbar*n^3*(1 - gamma + gamma*p)*(v - ek)
: ik = gbar*n^3*(1 - gamma + gamma*p)*(v - (-90))
}
DERIVATIVE state {
rates(v)
n' = (ninf - n)/ntau
p' = (pinf - p)/ptau
}
PROCEDURE rates(v(mV)) {
an = kan*exp(ean*v)
bn = kbn*exp(ebn*v)
ap = kap*exp(eap*v)
bp = kbp*exp(ebp*v)
ninf = an/(an + bn)
ntau = 1/(an + bn)
pinf = ap/(ap + bp)
ptau = 1/(ap + bp)
}