% code for figure 2e from:
% Cohen, M.X (2014). Fluctuations in oscillation frequency control spike
% timing and coordinate neural networks. Journal of Neuroscience
% This code was based on code from Izhikevich, February 25, 2003
clear
%% initialize...
% number of neurons
Nexcit = 800;
Ninhib = 200;
srate = 1000; % Hz
stim_dur = 5000; % ms
nTrials = 20;
inputstrength = 15; % arb. units
corfreqslide = zeros(nTrials,3);
re1 = rand(Nexcit,1); ri1 = rand(Ninhib,1);
re2 = rand(Nexcit,1); ri2 = rand(Ninhib,1);
re3 = rand(Nexcit,1); ri3 = rand(Ninhib,1);
gam1 = zeros(nTrials,stim_dur-1);
gam2 = zeros(nTrials,stim_dur-1);
gam3 = zeros(nTrials,stim_dur-1);
%% median filter parameters
n_order = 10;
orders = round(linspace(10,400,n_order)); % recommended: 10 steps between 10 and 400 ms (hard coded b/c srate=1000)
orders = floor((orders-1)/2); % pre/post halves
phasedmed1 = zeros(length(orders),stim_dur-1);
phasedmed2 = zeros(length(orders),stim_dur-1);
phasedmed3 = zeros(length(orders),stim_dur-1);
%%
for trials = 1:nTrials
% voltage
voltages1 = -65*ones(Nexcit+Ninhib,1); % Initial values of v
voltages2 = -65*ones(Nexcit+Ninhib,1); % Initial values of v
voltages3 = -65*ones(Nexcit+Ninhib,1); % Initial values of v
a1 = [ 0.02*ones(Nexcit,1); 0.02+0.08*ri1 ];
a2 = [ 0.02*ones(Nexcit,1); 0.02+0.08*ri2 ];
a3 = [ 0.02*ones(Nexcit,1); 0.02+0.08*ri3 ];
b1 = [ 0.20*ones(Nexcit,1); 0.25-0.05*ri1 ];
b2 = [ 0.20*ones(Nexcit,1); 0.25-0.05*ri2 ];
b3 = [ 0.20*ones(Nexcit,1); 0.25-0.05*ri3 ];
restingVoltage1 = [-65+15*re1.^2; -65*ones(Ninhib,1)]; % aka: c
restingVoltage2 = [-65+15*re2.^2; -65*ones(Ninhib,1)]; % aka: c
restingVoltage3 = [-65+15*re3.^2; -65*ones(Ninhib,1)]; % aka: c
d1 = [ 8-6*re1.^2; 2*ones(Ninhib,1)];
d2 = [ 8-6*re2.^2; 2*ones(Ninhib,1)];
d3 = [ 8-6*re3.^2; 2*ones(Ninhib,1)];
S1 = [0.5*rand(Nexcit+Ninhib,Nexcit), -rand(Nexcit+Ninhib,Ninhib)];
S2 = [0.5*rand(Nexcit+Ninhib,Nexcit), -rand(Nexcit+Ninhib,Ninhib)];
S3 = [0.5*rand(Nexcit+Ninhib,Nexcit), -rand(Nexcit+Ninhib,Ninhib)];
u1 = b1.*voltages1; % Initial values of u
u2 = b2.*voltages2; % Initial values of u
u3 = b3.*voltages3; % Initial values of u
% initialize firing matrix
fireall1 = zeros(Nexcit+Ninhib,stim_dur*(srate/1000));
fireall2 = zeros(Nexcit+Ninhib,stim_dur*(srate/1000));
fireall3 = zeros(Nexcit+Ninhib,stim_dur*(srate/1000));
firings1 = []; % spike timings
firings2 = []; % spike timings
firings3 = []; % spike timings
% initial firings
fired1 = voltages1 >= 30; % indices of spikes
fired2 = voltages2 >= 30; % indices of spikes
fired3 = voltages3 >= 30; % indices of spikes
% define long-range input
inputstrength2use = inputstrength+.2*(inputstrength+5)*sin(2*pi*.5*(1:stim_dur)/srate);
inputzAll1 = [ bsxfun(@times,inputstrength2use,randn(Nexcit,stim_dur)); bsxfun(@times,inputstrength2use/2.5,randn(Ninhib,stim_dur)) ];
inputzAll2 = [ bsxfun(@times,inputstrength2use,randn(Nexcit,stim_dur)); bsxfun(@times,inputstrength2use/2.5,randn(Ninhib,stim_dur)) ];
inputzAll3 = [ bsxfun(@times,inputstrength2use,randn(Nexcit,stim_dur)); bsxfun(@times,inputstrength2use/2.5,randn(Ninhib,stim_dur)) ];
%%
for timei=1:stim_dur*(srate/1000)
% add local input
input1 = inputzAll1(:,timei) + 1.2*sum(S1(:,fired1),2);
input2 = inputzAll1(:,timei) + .6*sum(S1(:,fired1),2) + .6*sum(S2(:,fired2),2);
input3 = inputzAll1(:,timei) + 1.2*sum(S3(:,fired3),2);
% update voltages (at twice sampling rate for numerical stability)
voltages1 = voltages1 + .5*(.04*voltages1.^2 + 5*voltages1 + 140 - u1 + input1);
voltages1 = voltages1 + .5*(.04*voltages1.^2 + 5*voltages1 + 140 - u1 + input1);
voltages2 = voltages2 + .5*(.04*voltages2.^2 + 5*voltages2 + 140 - u2 + input2);
voltages2 = voltages2 + .5*(.04*voltages2.^2 + 5*voltages2 + 140 - u2 + input2);
voltages3 = voltages3 + .5*(.04*voltages3.^2 + 5*voltages3 + 140 - u3 + input3);
voltages3 = voltages3 + .5*(.04*voltages3.^2 + 5*voltages3 + 140 - u3 + input3);
u1 = u1 + a1.*(b1.*voltages1-u1);
u2 = u2 + a2.*(b2.*voltages2-u2);
u3 = u3 + a3.*(b3.*voltages3-u3);
% find which neurons spike
fired1 = find(voltages1>=30); % indices of spikes
fired2 = find(voltages2>=30); % indices of spikes
fired3 = find(voltages3>=30); % indices of spikes
%firings1 = [firings1; timei+0*fired1,fired1];
%firings2 = [firings2; timei+0*fired2,fired2];
%firings3 = [firings3; timei+0*fired3,fired3];
fireall1(:,timei) = voltages1;
fireall2(:,timei) = voltages2;
fireall3(:,timei) = voltages3;
% reset voltages of fired neurons
voltages1(fired1) = restingVoltage1(fired1);
voltages2(fired2) = restingVoltage2(fired2);
voltages3(fired3) = restingVoltage3(fired3);
u1(fired1) = u1(fired1) + d1(fired1);
u2(fired2) = u2(fired2) + d2(fired2);
u3(fired3) = u3(fired3) + d3(fired3);
end
%% frequency sliding (temporal derivative of phase angle time series)
gamhil1 = hilbert(eegfilt(mean(fireall1(1:Nexcit,:),1),srate,40,90));
gamhil2 = hilbert(eegfilt(mean(fireall2(1:Nexcit,:),1),srate,40,90));
gamhil3 = hilbert(eegfilt(mean(fireall3(1:Nexcit,:),1),srate,40,90));
phased1 = diff(unwrap(angle(gamhil1)));
phased2 = diff(unwrap(angle(gamhil2)));
phased3 = diff(unwrap(angle(gamhil3)));
%% median filter
for oi=1:n_order
for ti=1:length(phased1)
temp = sort(phased1( max(ti-orders(oi),1):min(ti+orders(oi),stim_dur-1) ));
phasedmed1(oi,ti) = temp(floor(numel(temp)/2)+1);
temp = sort(phased2( max(ti-orders(oi),1):min(ti+orders(oi),stim_dur-1) ));
phasedmed2(oi,ti) = temp(floor(numel(temp)/2)+1);
temp = sort(phased3( max(ti-orders(oi),1):min(ti+orders(oi),stim_dur-1) ));
phasedmed3(oi,ti) = temp(floor(numel(temp)/2)+1);
end
end
gam1(trials,:) = srate*mean(phasedmed1,1)'/(2*pi);
gam2(trials,:) = srate*mean(phasedmed2,1)'/(2*pi);
gam3(trials,:) = srate*mean(phasedmed3,1)'/(2*pi);
%% compute correlated frequency sliding
corfreqslide(trials,1) = corr(gam1(trials,:)',gam2(trials,:)');
corfreqslide(trials,2) = corr(gam1(trials,:)',gam3(trials,:)');
corfreqslide(trials,3) = corr(gam2(trials,:)',gam3(trials,:)');
end % end trials
%% plotting...
figure, clf
plot(1,corfreqslide(:,1),'o')
hold on
plot(2,corfreqslide(:,2),'o')
plot(3,corfreqslide(:,3),'o')
set(gca,'xlim',[0 4],'xtick',1:3,'xticklabel',{'1-2';'1-3';'2-3'},'ylim',[.2 1])
xlabel('Network pair'), ylabel('Correlation coefficient')
%%