TITLE detailed model of glutamate AMPA receptors
COMMENT
-----------------------------------------------------------------------------
Kinetic model of AMPA receptors
===============================
6-state gating model:
similar to that suggested by
Patneau and Mayer, Neuron 6:785 (1991)
Patneau et al, J Neurosci 13:3496 (1993)
C ---- C1 -- C2 -- O
| |
D1 D2
-----------------------------------------------------------------------------
Based on voltage-clamp recordings of AMPA receptor-mediated currents in rat
hippocampal slices (Xiang et al., J. Neurophysiol. 71: 2552-2556, 1994), this
model was fit directly to experimental recordings in order to obtain the
optimal values for the parameters (see Destexhe, Mainen and Sejnowski, 1996).
-----------------------------------------------------------------------------
This mod file does not include mechanisms for the release and time course
of transmitter; it is to be used in conjunction with a sepearate mechanism
to describe the release of transmitter and that provides the concentration
of transmitter in the synaptic cleft (to be connected to pointer C here).
-----------------------------------------------------------------------------
See details in:
Destexhe, A., Mainen, Z.F. and Sejnowski, T.J. Kinetic models of
synaptic transmission. In: Methods in Neuronal Modeling (2nd edition;
edited by Koch, C. and Segev, I.), MIT press, Cambridge, 1998, pp. 1-25.
(electronic copy available at http://cns.iaf.cnrs-gif.fr)
Alain Destexhe and Zach Mainen, 1995
-----------------------------------------------------------------------------
ENDCOMMENT
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
NEURON {
POINT_PROCESS AMPA5
POINTER C
RANGE C0, C1, C2, D1, D2, O
RANGE g, gmax, rb, i :i added by sara
GLOBAL Erev
GLOBAL Rb, Ru1, Ru2, Rd, Rr, Ro, Rc
GLOBAL vmin, vmax
NONSPECIFIC_CURRENT i
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(pS) = (picosiemens)
(umho) = (micromho)
(mM) = (milli/liter)
(uM) = (micro/liter)
}
PARAMETER {
Erev = 0 (mV) : reversal potential
gmax = 500 (pS) : maximal conductance
vmin = -120 (mV)
vmax = 100 (mV)
: Rates
Rb = 13 (/mM /ms): binding
: diffusion limited (DO NOT ADJUST)
Ru1 = 0.0059 (/ms) : unbinding (1st site)
Ru2 = 86 (/ms) : unbinding (2nd site)
Rd = 0.9 (/ms) : desensitization
Rr = 0.064 (/ms) : resensitization
Ro = 2.7 (/ms) : opening
Rc = 0.2 (/ms) : closing
}
ASSIGNED {
v (mV) : postsynaptic voltage
i (nA) : current = g*(v - Erev)
g (pS) : conductance
C (mM) : pointer to glutamate concentration
rb (/ms) : binding
}
STATE {
: Channel states (all fractions)
C0 : unbound
C1 : single glu bound
C2 : double glu bound
D1 : single glu bound, desensitized
D2 : double glu bound, desensitized
O : open state 2
}
INITIAL {
C0=1
C1=0
C2=0
D1=0
D2=0
O=0
}
BREAKPOINT {
SOLVE kstates METHOD sparse
g = gmax * O
i = (1e-6) * g * (v - Erev)
}
KINETIC kstates {
rb = Rb * C
~ C0 <-> C1 (rb,Ru1)
~ C1 <-> C2 (rb,Ru2)
~ C1 <-> D1 (Rd,Rr)
~ C2 <-> D2 (Rd,Rr)
~ C2 <-> O (Ro,Rc)
CONSERVE C0+C1+C2+D1+D2+O = 1
}