/* Created by Language version: 6.2.0 */
/* NOT VECTORIZED */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define _threadargscomma_ /**/
#define _threadargs_ /**/
#define _threadargsprotocomma_ /**/
#define _threadargsproto_ /**/
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
static double *_p; static Datum *_ppvar;
#define t nrn_threads->_t
#define dt nrn_threads->_dt
#define gbar _p[0]
#define gk _p[1]
#define ninf _p[2]
#define ntau _p[3]
#define n _p[4]
#define a _p[5]
#define b _p[6]
#define ik _p[7]
#define ek _p[8]
#define Dn _p[9]
#define _g _p[10]
#define _ion_ek *_ppvar[0]._pval
#define _ion_ik *_ppvar[1]._pval
#define _ion_dikdv *_ppvar[2]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_myexp(void);
static void _hoc_rates(void);
static void _hoc_states(void);
static void _hoc_trates(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_p = _prop->param; _ppvar = _prop->dparam;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_kv", _hoc_setdata,
"myexp_kv", _hoc_myexp,
"rates_kv", _hoc_rates,
"states_kv", _hoc_states,
"trates_kv", _hoc_trates,
0, 0
};
#define myexp myexp_kv
extern double myexp( double );
/* declare global and static user variables */
#define Rb Rb_kv
double Rb = 0.002;
#define Ra Ra_kv
double Ra = 0.02;
#define qa qa_kv
double qa = 9;
#define q10 q10_kv
double q10 = 2.3;
#define tha tha_kv
double tha = 25;
#define tadj tadj_kv
double tadj = 0;
#define temp temp_kv
double temp = 23;
#define usetable usetable_kv
double usetable = 1;
#define vmax vmax_kv
double vmax = 100;
#define vmin vmin_kv
double vmin = -120;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
"usetable_kv", 0, 1,
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"tha_kv", "mV",
"qa_kv", "mV",
"Ra_kv", "/ms",
"Rb_kv", "/ms",
"temp_kv", "degC",
"vmin_kv", "mV",
"vmax_kv", "mV",
"gbar_kv", "pS/um2",
"gk_kv", "pS/um2",
"ntau_kv", "ms",
0,0
};
static double delta_t = 1;
static double n0 = 0;
static double v = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"tha_kv", &tha_kv,
"qa_kv", &qa_kv,
"Ra_kv", &Ra_kv,
"Rb_kv", &Rb_kv,
"temp_kv", &temp_kv,
"q10_kv", &q10_kv,
"vmin_kv", &vmin_kv,
"vmax_kv", &vmax_kv,
"tadj_kv", &tadj_kv,
"usetable_kv", &usetable_kv,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"6.2.0",
"kv",
"gbar_kv",
0,
"gk_kv",
"ninf_kv",
"ntau_kv",
0,
"n_kv",
0,
0};
static Symbol* _k_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 11, _prop);
/*initialize range parameters*/
gbar = 5;
_prop->param = _p;
_prop->param_size = 11;
_ppvar = nrn_prop_datum_alloc(_mechtype, 3, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_k_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[0]._pval = &prop_ion->param[0]; /* ek */
_ppvar[1]._pval = &prop_ion->param[3]; /* ik */
_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dikdv */
}
static void _initlists();
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*f)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _kvz_nature_reg() {
int _vectorized = 0;
_initlists();
ion_reg("k", -10000.);
_k_sym = hoc_lookup("k_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 0);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
hoc_register_dparam_size(_mechtype, 3);
hoc_register_cvode(_mechtype, _ode_count, 0, 0, 0);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 kv /Users/cweaver/research/Neuron/Coskren/MorphologyPaperTwo/Scripts/NeuronMechanisms/x86_64/kvz_nature.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static double _znexp ;
static double *_t_ninf;
static double *_t__znexp;
static int _reset;
static char *modelname = "";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int _f_trates(double);
static int rates(double);
static int states();
static int trates(double);
static void _n_trates(double);
static int states ( ) {
trates ( _threadargscomma_ v ) ;
n = n + _znexp * ( ninf - n ) ;
/*VERBATIM*/
return 0;
return 0; }
static void _hoc_states(void) {
double _r;
_r = 1.;
states ( );
hoc_retpushx(_r);
}
static double _mfac_trates, _tmin_trates;
static void _check_trates();
static void _check_trates() {
static int _maktable=1; int _i, _j, _ix = 0;
double _xi, _tmax;
static double _sav_dt;
static double _sav_celsius;
static double _sav_temp;
static double _sav_Ra;
static double _sav_Rb;
static double _sav_tha;
static double _sav_qa;
if (!usetable) {return;}
if (_sav_dt != dt) { _maktable = 1;}
if (_sav_celsius != celsius) { _maktable = 1;}
if (_sav_temp != temp) { _maktable = 1;}
if (_sav_Ra != Ra) { _maktable = 1;}
if (_sav_Rb != Rb) { _maktable = 1;}
if (_sav_tha != tha) { _maktable = 1;}
if (_sav_qa != qa) { _maktable = 1;}
if (_maktable) { double _x, _dx; _maktable=0;
_tmin_trates = vmin ;
_tmax = vmax ;
_dx = (_tmax - _tmin_trates)/199.; _mfac_trates = 1./_dx;
for (_i=0, _x=_tmin_trates; _i < 200; _x += _dx, _i++) {
_f_trates(_x);
_t_ninf[_i] = ninf;
_t__znexp[_i] = _znexp;
}
_sav_dt = dt;
_sav_celsius = celsius;
_sav_temp = temp;
_sav_Ra = Ra;
_sav_Rb = Rb;
_sav_tha = tha;
_sav_qa = qa;
}
}
static int trates(double _lv){ _check_trates();
_n_trates(_lv);
return 0;
}
static void _n_trates(double _lv){ int _i, _j;
double _xi, _theta;
if (!usetable) {
_f_trates(_lv); return;
}
_xi = _mfac_trates * (_lv - _tmin_trates);
_i = (int) _xi;
if (_xi <= 0.) {
ninf = _t_ninf[0];
_znexp = _t__znexp[0];
return; }
if (_i >= 199) {
ninf = _t_ninf[199];
_znexp = _t__znexp[199];
return; }
_theta = _xi - (double)_i;
ninf = _t_ninf[_i] + _theta*(_t_ninf[_i+1] - _t_ninf[_i]);
_znexp = _t__znexp[_i] + _theta*(_t__znexp[_i+1] - _t__znexp[_i]);
}
static int _f_trates ( double _lv ) {
double _ltinc ;
rates ( _threadargscomma_ _lv ) ;
tadj = pow( q10 , ( ( celsius - temp ) / 10.0 ) ) ;
_ltinc = - dt * tadj ;
_znexp = 1.0 - myexp ( _threadargscomma_ _ltinc / ntau ) ;
return 0; }
static void _hoc_trates(void) {
double _r;
_r = 1.;
trates ( *getarg(1) );
hoc_retpushx(_r);
}
double myexp ( double _lx ) {
double _lmyexp;
if ( _lx < - 100.0 ) {
_lmyexp = 0.0 ;
}
else {
_lmyexp = exp ( _lx ) ;
}
return _lmyexp;
}
static void _hoc_myexp(void) {
double _r;
_r = myexp ( *getarg(1) );
hoc_retpushx(_r);
}
static int rates ( double _lv ) {
a = Ra * ( _lv - tha ) / ( 1.0 - exp ( - ( _lv - tha ) / qa ) ) ;
b = - Rb * ( _lv - tha ) / ( 1.0 - exp ( ( _lv - tha ) / qa ) ) ;
ntau = 1.0 / ( a + b ) ;
ninf = a * ntau ;
return 0; }
static void _hoc_rates(void) {
double _r;
_r = 1.;
rates ( *getarg(1) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ hoc_execerror("kv", "cannot be used with CVODE"); return 0;}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_k_sym, _ppvar, 0, 0);
nrn_update_ion_pointer(_k_sym, _ppvar, 1, 3);
nrn_update_ion_pointer(_k_sym, _ppvar, 2, 4);
}
static void initmodel() {
int _i; double _save;_ninits++;
_save = t;
t = 0.0;
{
n = n0;
{
trates ( _threadargscomma_ v ) ;
n = ninf ;
}
_sav_indep = t; t = _save;
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
ek = _ion_ek;
initmodel();
}}
static double _nrn_current(double _v){double _current=0.;v=_v;{ {
gk = tadj * gbar * n ;
ik = ( 1e-4 ) * gk * ( v - ek ) ;
}
_current += ik;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
ek = _ion_ek;
_g = _nrn_current(_v + .001);
{ double _dik;
_dik = ik;
_rhs = _nrn_current(_v);
_ion_dikdv += (_dik - ik)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ik += ik ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type){
double _break, _save;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
_break = t + .5*dt; _save = t;
v=_v;
{
ek = _ion_ek;
{ {
for (; t < _break; t += dt) {
error = states();
if(error){fprintf(stderr,"at line 72 in file kvz_nature.mod:\n SOLVE states\n"); nrn_complain(_p); abort_run(error);}
}}
t = _save;
} }}
}
static void terminal(){}
static void _initlists() {
int _i; static int _first = 1;
if (!_first) return;
_t_ninf = makevector(200*sizeof(double));
_t__znexp = makevector(200*sizeof(double));
_first = 0;
}