/* Created by Language version: 6.2.0 */
/* NOT VECTORIZED */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define _threadargscomma_ /**/
#define _threadargs_ /**/
#define _threadargsprotocomma_ /**/
#define _threadargsproto_ /**/
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
static double *_p; static Datum *_ppvar;
#define t nrn_threads->_t
#define dt nrn_threads->_dt
#define gbar _p[0]
#define gna _p[1]
#define minf _p[2]
#define hinf _p[3]
#define mtau _p[4]
#define htau _p[5]
#define m _p[6]
#define h _p[7]
#define ina _p[8]
#define ena _p[9]
#define Dm _p[10]
#define Dh _p[11]
#define _g _p[12]
#define _ion_ena *_ppvar[0]._pval
#define _ion_ina *_ppvar[1]._pval
#define _ion_dinadv *_ppvar[2]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
/* external NEURON variables */
extern double celsius;
/* declaration of user functions */
static void _hoc_myexp(void);
static void _hoc_rates(void);
static void _hoc_states(void);
static void _hoc_trap0(void);
static void _hoc_trates(void);
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_p = _prop->param; _ppvar = _prop->dparam;
}
static void _hoc_setdata() {
Prop *_prop, *hoc_getdata_range(int);
_prop = hoc_getdata_range(_mechtype);
_setdata(_prop);
hoc_retpushx(1.);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
"setdata_na", _hoc_setdata,
"myexp_na", _hoc_myexp,
"rates_na", _hoc_rates,
"states_na", _hoc_states,
"trap0_na", _hoc_trap0,
"trates_na", _hoc_trates,
0, 0
};
#define myexp myexp_na
#define trap0 trap0_na
extern double myexp( double );
extern double trap0( double , double , double , double );
/* declare global and static user variables */
#define Rg Rg_na
double Rg = 0.0091;
#define Rd Rd_na
double Rd = 0.024;
#define Rb Rb_na
double Rb = 0.124;
#define Ra Ra_na
double Ra = 0.182;
#define q10 q10_na
double q10 = 2.3;
#define qinf qinf_na
double qinf = 6.2;
#define qi qi_na
double qi = 5;
#define qa qa_na
double qa = 9;
#define tadj tadj_na
double tadj = 0;
#define temp temp_na
double temp = 23;
#define thinf thinf_na
double thinf = -65;
#define thi2 thi2_na
double thi2 = -75;
#define thi1 thi1_na
double thi1 = -50;
#define tha tha_na
double tha = -35;
#define usetable usetable_na
double usetable = 1;
#define vshift vshift_na
double vshift = -10;
#define vmax vmax_na
double vmax = 100;
#define vmin vmin_na
double vmin = -120;
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
"usetable_na", 0, 1,
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"vshift_na", "mV",
"tha_na", "mV",
"qa_na", "mV",
"Ra_na", "/ms",
"Rb_na", "/ms",
"thi1_na", "mV",
"thi2_na", "mV",
"qi_na", "mV",
"thinf_na", "mV",
"qinf_na", "mV",
"Rg_na", "/ms",
"Rd_na", "/ms",
"temp_na", "degC",
"vmin_na", "mV",
"vmax_na", "mV",
"gbar_na", "pS/um2",
"gna_na", "pS/um2",
"mtau_na", "ms",
"htau_na", "ms",
0,0
};
static double delta_t = 1;
static double h0 = 0;
static double m0 = 0;
static double v = 0;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
"vshift_na", &vshift_na,
"tha_na", &tha_na,
"qa_na", &qa_na,
"Ra_na", &Ra_na,
"Rb_na", &Rb_na,
"thi1_na", &thi1_na,
"thi2_na", &thi2_na,
"qi_na", &qi_na,
"thinf_na", &thinf_na,
"qinf_na", &qinf_na,
"Rg_na", &Rg_na,
"Rd_na", &Rd_na,
"temp_na", &temp_na,
"q10_na", &q10_na,
"vmin_na", &vmin_na,
"vmax_na", &vmax_na,
"tadj_na", &tadj_na,
"usetable_na", &usetable_na,
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static int _ode_count(int);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"6.2.0",
"na",
"gbar_na",
0,
"gna_na",
"minf_na",
"hinf_na",
"mtau_na",
"htau_na",
0,
"m_na",
"h_na",
0,
0};
static Symbol* _na_sym;
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
_p = nrn_prop_data_alloc(_mechtype, 13, _prop);
/*initialize range parameters*/
gbar = 1000;
_prop->param = _p;
_prop->param_size = 13;
_ppvar = nrn_prop_datum_alloc(_mechtype, 3, _prop);
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
prop_ion = need_memb(_na_sym);
nrn_promote(prop_ion, 0, 1);
_ppvar[0]._pval = &prop_ion->param[0]; /* ena */
_ppvar[1]._pval = &prop_ion->param[3]; /* ina */
_ppvar[2]._pval = &prop_ion->param[4]; /* _ion_dinadv */
}
static void _initlists();
static void _update_ion_pointer(Datum*);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*f)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _naz_nature_reg() {
int _vectorized = 0;
_initlists();
ion_reg("na", -10000.);
_na_sym = hoc_lookup("na_ion");
register_mech(_mechanism, nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init, hoc_nrnpointerindex, 0);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
_nrn_thread_reg(_mechtype, 2, _update_ion_pointer);
hoc_register_dparam_size(_mechtype, 3);
hoc_register_cvode(_mechtype, _ode_count, 0, 0, 0);
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 na /Users/cweaver/research/Neuron/Coskren/MorphologyPaperTwo/Scripts/NeuronMechanisms/x86_64/naz_nature.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static double _zmexp , _zhexp ;
static double *_t_minf;
static double *_t__zmexp;
static double *_t_hinf;
static double *_t__zhexp;
static int _reset;
static char *modelname = "";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int _f_trates(double);
static int rates(double);
static int states();
static int trates(double);
static void _n_trates(double);
static int states ( ) {
trates ( _threadargscomma_ v + vshift ) ;
m = m + _zmexp * ( minf - m ) ;
h = h + _zhexp * ( hinf - h ) ;
/*VERBATIM*/
return 0;
return 0; }
static void _hoc_states(void) {
double _r;
_r = 1.;
states ( );
hoc_retpushx(_r);
}
static double _mfac_trates, _tmin_trates;
static void _check_trates();
static void _check_trates() {
static int _maktable=1; int _i, _j, _ix = 0;
double _xi, _tmax;
static double _sav_dt;
static double _sav_celsius;
static double _sav_temp;
static double _sav_Ra;
static double _sav_Rb;
static double _sav_Rd;
static double _sav_Rg;
static double _sav_tha;
static double _sav_thi1;
static double _sav_thi2;
static double _sav_qa;
static double _sav_qi;
static double _sav_qinf;
if (!usetable) {return;}
if (_sav_dt != dt) { _maktable = 1;}
if (_sav_celsius != celsius) { _maktable = 1;}
if (_sav_temp != temp) { _maktable = 1;}
if (_sav_Ra != Ra) { _maktable = 1;}
if (_sav_Rb != Rb) { _maktable = 1;}
if (_sav_Rd != Rd) { _maktable = 1;}
if (_sav_Rg != Rg) { _maktable = 1;}
if (_sav_tha != tha) { _maktable = 1;}
if (_sav_thi1 != thi1) { _maktable = 1;}
if (_sav_thi2 != thi2) { _maktable = 1;}
if (_sav_qa != qa) { _maktable = 1;}
if (_sav_qi != qi) { _maktable = 1;}
if (_sav_qinf != qinf) { _maktable = 1;}
if (_maktable) { double _x, _dx; _maktable=0;
_tmin_trates = vmin ;
_tmax = vmax ;
_dx = (_tmax - _tmin_trates)/199.; _mfac_trates = 1./_dx;
for (_i=0, _x=_tmin_trates; _i < 200; _x += _dx, _i++) {
_f_trates(_x);
_t_minf[_i] = minf;
_t__zmexp[_i] = _zmexp;
_t_hinf[_i] = hinf;
_t__zhexp[_i] = _zhexp;
}
_sav_dt = dt;
_sav_celsius = celsius;
_sav_temp = temp;
_sav_Ra = Ra;
_sav_Rb = Rb;
_sav_Rd = Rd;
_sav_Rg = Rg;
_sav_tha = tha;
_sav_thi1 = thi1;
_sav_thi2 = thi2;
_sav_qa = qa;
_sav_qi = qi;
_sav_qinf = qinf;
}
}
static int trates(double _lv){ _check_trates();
_n_trates(_lv);
return 0;
}
static void _n_trates(double _lv){ int _i, _j;
double _xi, _theta;
if (!usetable) {
_f_trates(_lv); return;
}
_xi = _mfac_trates * (_lv - _tmin_trates);
_i = (int) _xi;
if (_xi <= 0.) {
minf = _t_minf[0];
_zmexp = _t__zmexp[0];
hinf = _t_hinf[0];
_zhexp = _t__zhexp[0];
return; }
if (_i >= 199) {
minf = _t_minf[199];
_zmexp = _t__zmexp[199];
hinf = _t_hinf[199];
_zhexp = _t__zhexp[199];
return; }
_theta = _xi - (double)_i;
minf = _t_minf[_i] + _theta*(_t_minf[_i+1] - _t_minf[_i]);
_zmexp = _t__zmexp[_i] + _theta*(_t__zmexp[_i+1] - _t__zmexp[_i]);
hinf = _t_hinf[_i] + _theta*(_t_hinf[_i+1] - _t_hinf[_i]);
_zhexp = _t__zhexp[_i] + _theta*(_t__zhexp[_i+1] - _t__zhexp[_i]);
}
static int _f_trates ( double _lv ) {
double _ltinc ;
rates ( _threadargscomma_ _lv ) ;
tadj = pow( q10 , ( ( celsius - temp ) / 10.0 ) ) ;
_ltinc = - dt * tadj ;
_zmexp = 1.0 - myexp ( _threadargscomma_ _ltinc / mtau ) ;
_zhexp = 1.0 - myexp ( _threadargscomma_ _ltinc / htau ) ;
return 0; }
static void _hoc_trates(void) {
double _r;
_r = 1.;
trates ( *getarg(1) );
hoc_retpushx(_r);
}
static int rates ( double _lvm ) {
double _la , _lb ;
_la = trap0 ( _threadargscomma_ _lvm , tha , Ra , qa ) ;
_lb = trap0 ( _threadargscomma_ - _lvm , - tha , Rb , qa ) ;
mtau = 1.0 / ( _la + _lb ) ;
minf = _la * mtau ;
_la = trap0 ( _threadargscomma_ _lvm , thi1 , Rd , qi ) ;
_lb = trap0 ( _threadargscomma_ - _lvm , - thi2 , Rg , qi ) ;
htau = 1.0 / ( _la + _lb ) ;
hinf = 1.0 / ( 1.0 + myexp ( _threadargscomma_ ( _lvm - thinf ) / qinf ) ) ;
return 0; }
static void _hoc_rates(void) {
double _r;
_r = 1.;
rates ( *getarg(1) );
hoc_retpushx(_r);
}
double myexp ( double _lx ) {
double _lmyexp;
if ( _lx < - 100.0 ) {
_lmyexp = 0.0 ;
}
else {
_lmyexp = exp ( _lx ) ;
}
return _lmyexp;
}
static void _hoc_myexp(void) {
double _r;
_r = myexp ( *getarg(1) );
hoc_retpushx(_r);
}
double trap0 ( double _lv , double _lth , double _la , double _lq ) {
double _ltrap0;
if ( fabs ( _lv / _lth ) > 1e-6 ) {
_ltrap0 = _la * ( _lv - _lth ) / ( 1.0 - myexp ( _threadargscomma_ - ( _lv - _lth ) / _lq ) ) ;
}
else {
_ltrap0 = _la * _lq ;
}
return _ltrap0;
}
static void _hoc_trap0(void) {
double _r;
_r = trap0 ( *getarg(1) , *getarg(2) , *getarg(3) , *getarg(4) );
hoc_retpushx(_r);
}
static int _ode_count(int _type){ hoc_execerror("na", "cannot be used with CVODE"); return 0;}
extern void nrn_update_ion_pointer(Symbol*, Datum*, int, int);
static void _update_ion_pointer(Datum* _ppvar) {
nrn_update_ion_pointer(_na_sym, _ppvar, 0, 0);
nrn_update_ion_pointer(_na_sym, _ppvar, 1, 3);
nrn_update_ion_pointer(_na_sym, _ppvar, 2, 4);
}
static void initmodel() {
int _i; double _save;_ninits++;
_save = t;
t = 0.0;
{
h = h0;
m = m0;
{
trates ( _threadargscomma_ v + vshift ) ;
m = minf ;
h = hinf ;
}
_sav_indep = t; t = _save;
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
ena = _ion_ena;
initmodel();
}}
static double _nrn_current(double _v){double _current=0.;v=_v;{ {
gna = tadj * gbar * m * m * m * h ;
ina = ( 1e-4 ) * gna * ( v - ena ) ;
}
_current += ina;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
ena = _ion_ena;
_g = _nrn_current(_v + .001);
{ double _dina;
_dina = ina;
_rhs = _nrn_current(_v);
_ion_dinadv += (_dina - ina)/.001 ;
}
_g = (_g - _rhs)/.001;
_ion_ina += ina ;
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type){
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type){
double _break, _save;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
_break = t + .5*dt; _save = t;
v=_v;
{
ena = _ion_ena;
{ {
for (; t < _break; t += dt) {
error = states();
if(error){fprintf(stderr,"at line 90 in file naz_nature.mod:\n SOLVE states\n"); nrn_complain(_p); abort_run(error);}
}}
t = _save;
} }}
}
static void terminal(){}
static void _initlists() {
int _i; static int _first = 1;
if (!_first) return;
_t_minf = makevector(200*sizeof(double));
_t__zmexp = makevector(200*sizeof(double));
_t_hinf = makevector(200*sizeof(double));
_t__zhexp = makevector(200*sizeof(double));
_first = 0;
}