TITLE Anomalous rectifier current from Rhodes and Llinas, J Physiol 565:765-781, 2005.
COMMENT
Implemented by Christina Weaver, 2007 (christina.weaver@mssm.edu),
Including general kinetics parameters.
from Rhodes and Llinas, J. Physiol. 565:765-781, (2005).
minf = 1.0 / (1.0 + exp( (v-(-75))/5.5))
tauM = 100 / ( exp(- (v-(-75))/11.0 ) + exp((v-(-75))/11) )
if tauM < 5, tauM = 5.
generalizing this:
gH = gbarH * m * (v-erev)
dm/dt = ( minf(V) - m ) / mtau(V)
minf = 1.0 / (1.0 + exp( -2*a*(v-Vh))
tauM = 1.0 / ( b * exp(a*(v-Vh) ) + b * exp(-a*(v-Vh)) )
if tauM < tauMin, tauM = tauMin.
where Vh = -75, a = -1 / 11, b = 1/100, tauMin = 5.
This follows the general kinetics format also used by Av-Ron and Vidal, 1999.
For comparison, Traub et al (2003) used the following equations:
minf = 1 / (1+exp((v+75)/5.5))
tauM = 1 / (exp(-14.6-0.086*v) + exp(-1.87+0.07*v))
ENDCOMMENT
UNITS {
(mV) = (millivolt)
(mA) = (milliamp)
}
NEURON {
SUFFIX ar
NONSPECIFIC_CURRENT i
RANGE gbar
RANGE Vh, tauMin
RANGE a, b
}
PARAMETER {
gbar = 0.0 (mho/cm2)
erev = -55 (mV)
Vh = -75 (mV)
a = -0.4090909 (/mV)
b = 0.001 (1)
tauMin = 5.0 (ms)
}
ASSIGNED {
i (mA/cm2)
minf (1)
mtau (ms)
v (mV)
}
STATE {
m
}
INITIAL {
rates(v)
m = minf
}
BREAKPOINT {
SOLVE states METHOD cnexp
i = gbar * m * ( v - erev )
}
DERIVATIVE states {
rates(v)
m' = (minf-m)/mtau
}
UNITSOFF
PROCEDURE rates(V (mV)) {
minf = 1 / ( 1 + exp( -2 * a * ( V - Vh )) )
mtau = 1 / b / (exp( a*(V-Vh)) + exp (-a*(V-Vh)) )
if( mtau < tauMin ) { mtau = tauMin }
}
UNITSON