/******
aged neuron Aug3IR2f is the one that Aniruddha spent so much time fitting. We don't
want to fit passive parameters of each neuron anew to this model. Instead, scale the
Rm values of this model relative to the sizes of the optimized values in the HH
passive parameter optimizations.
Christina Weaver, Aug 30 2014
******/
func scaleRm_vsAug3f() {
if( $1 == 6 ) { // dec15IR2e
RMfac = 0.397317032
}
if( $1 == 7 ) { // jun7d
RMfac = 1.072474104
}
if( $1 == 8 ) { // may3IR2d
RMfac = 0.575547631
}
if( $1 == 9 ) { // may3IR2h
RMfac = 0.315299711
}
if( $1 == 10 ) { // may3IR2i
RMfac = 0.44686704
}
if( $1 == 11 ) { // may3IR2t
RMfac = 0.404313126
}
if( $1 == 0 ) { // aug3IR2a
RMfac = 0.72718628
}
if( $1 == 1 ) { // aug3c
RMfac = 0.67030056
}
if( $1 == 2 ) { // aug3IR2e
RMfac = 0.849040584
}
if( $1 == 3 ) { // aug3IR2f
RMfac = 1
}
if( $1 == 4 ) { // aug3IR2g
RMfac = 0.698930209
}
if( $1 == 5 ) { // feb27IR2n
RMfac = 1.23158431
}
return RMfac
}
func scaleCm_vsAug3f() {
if( $1 == 6 ) { // dec15IR2e
CMfac = 1.842065654
}
if( $1 == 7 ) { // jun7d
CMfac = 2.743216805
}
if( $1 == 8 ) { // may3IR2d
CMfac = 1.737475659
}
if( $1 == 9 ) { // may3IR2h
CMfac = 2.133695652
}
if( $1 == 10 ) { // may3IR2i
CMfac = 3.74588612
}
if( $1 == 11 ) { // may3IR2t
CMfac = 2.876590946
}
if( $1 == 0 ) { // aug3IR2a
CMfac = 0.754346912
}
if( $1 == 1 ) { // aug3c
CMfac = 1.623757851
}
if( $1 == 2 ) { // aug3IR2e
CMfac = 0.94736087
}
if( $1 == 3 ) { // aug3IR2f
CMfac = 1
}
if( $1 == 4 ) { // aug3IR2g
CMfac = 0.96420649
}
if( $1 == 5 ) { // feb27IR2n
CMfac = 1.282665046
}
return CMfac
}
/*********************************************
scaling Cm as suggested by the customized HH model parameters, then applying to the
aug3f Cm = .833333 that Aniruddha determined, leads to some young neurons with high
firing. Plus it seems unlikely that the Cm value would vary by THAT much in
young vs. aged neurons without Jennie seeing it in the time constant. So readjust
the parameter: Reduce the customized scale factor for young neurons by 25%.
Note that aged neurons are scaled by the original 'customized passive' scale factor.
*********************************************/
func scaleCmYg75_vsAug3f() {
if( $1 == 6 ) { // dec15IR2e
CMfac = 0.921032827
}
if( $1 == 7 ) { // jun7d
CMfac = 1.371608403
}
if( $1 == 8 ) { // may3IR2d
CMfac = 0.86873783
}
if( $1 == 9 ) { // may3IR2h
CMfac = 1.066847826
}
if( $1 == 10 ) { // may3IR2i
CMfac = 1.87294306
}
if( $1 == 11 ) { // may3IR2t
CMfac = 1.438295473
}
// aged neurons: scale by the originally calculated amount
if( $1 == 0 ) { // aug3IR2a
CMfac = 0.754346912
}
if( $1 == 1 ) { // aug3c
CMfac = 1.623757851
}
if( $1 == 2 ) { // aug3IR2e
CMfac = 0.94736087
}
if( $1 == 3 ) { // aug3IR2f
CMfac = 1
}
if( $1 == 4 ) { // aug3IR2g
CMfac = 0.96420649
}
if( $1 == 5 ) { // feb27IR2n
CMfac = 1.282665046
}
return CMfac
}