/* Created by Language version: 7.7.0 */
/* VECTORIZED */
#define NRN_VECTORIZED 1
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "scoplib_ansi.h"
#undef PI
#define nil 0
#include "md1redef.h"
#include "section.h"
#include "nrniv_mf.h"
#include "md2redef.h"
#if METHOD3
extern int _method3;
#endif
#if !NRNGPU
#undef exp
#define exp hoc_Exp
extern double hoc_Exp(double);
#endif
#define nrn_init _nrn_init__DCNsynGABA
#define _nrn_initial _nrn_initial__DCNsynGABA
#define nrn_cur _nrn_cur__DCNsynGABA
#define _nrn_current _nrn_current__DCNsynGABA
#define nrn_jacob _nrn_jacob__DCNsynGABA
#define nrn_state _nrn_state__DCNsynGABA
#define _net_receive _net_receive__DCNsynGABA
#define state state__DCNsynGABA
#define _threadargscomma_ _p, _ppvar, _thread, _nt,
#define _threadargsprotocomma_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt,
#define _threadargs_ _p, _ppvar, _thread, _nt
#define _threadargsproto_ double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt
/*SUPPRESS 761*/
/*SUPPRESS 762*/
/*SUPPRESS 763*/
/*SUPPRESS 765*/
extern double *getarg();
/* Thread safe. No static _p or _ppvar. */
#define t _nt->_t
#define dt _nt->_dt
#define tauRise _p[0]
#define tauFall _p[1]
#define e _p[2]
#define startDeprLevel _p[3]
#define deprLevel _p[4]
#define i _p[5]
#define g _p[6]
#define A _p[7]
#define B _p[8]
#define relProbSS _p[9]
#define relProb (_p + 10)
#define freq _p[12]
#define tau _p[13]
#define tSpikes (_p + 14)
#define ISI _p[16]
#define notFirstSpike _p[17]
#define factor _p[18]
#define DA _p[19]
#define DB _p[20]
#define v _p[21]
#define _g _p[22]
#define _tsav _p[23]
#define _nd_area *_ppvar[0]._pval
#if MAC
#if !defined(v)
#define v _mlhv
#endif
#if !defined(h)
#define h _mlhh
#endif
#endif
#if defined(__cplusplus)
extern "C" {
#endif
static int hoc_nrnpointerindex = -1;
static Datum* _extcall_thread;
static Prop* _extcall_prop;
/* external NEURON variables */
/* declaration of user functions */
static double _hoc_giveFractionG();
static int _mechtype;
extern void _nrn_cacheloop_reg(int, int);
extern void hoc_register_prop_size(int, int, int);
extern void hoc_register_limits(int, HocParmLimits*);
extern void hoc_register_units(int, HocParmUnits*);
extern void nrn_promote(Prop*, int, int);
extern Memb_func* memb_func;
#define NMODL_TEXT 1
#if NMODL_TEXT
static const char* nmodl_file_text;
static const char* nmodl_filename;
extern void hoc_reg_nmodl_text(int, const char*);
extern void hoc_reg_nmodl_filename(int, const char*);
#endif
extern Prop* nrn_point_prop_;
static int _pointtype;
static void* _hoc_create_pnt(_ho) Object* _ho; { void* create_point_process();
return create_point_process(_pointtype, _ho);
}
static void _hoc_destroy_pnt();
static double _hoc_loc_pnt(_vptr) void* _vptr; {double loc_point_process();
return loc_point_process(_pointtype, _vptr);
}
static double _hoc_has_loc(_vptr) void* _vptr; {double has_loc_point();
return has_loc_point(_vptr);
}
static double _hoc_get_loc_pnt(_vptr)void* _vptr; {
double get_loc_point_process(); return (get_loc_point_process(_vptr));
}
extern void _nrn_setdata_reg(int, void(*)(Prop*));
static void _setdata(Prop* _prop) {
_extcall_prop = _prop;
}
static void _hoc_setdata(void* _vptr) { Prop* _prop;
_prop = ((Point_process*)_vptr)->_prop;
_setdata(_prop);
}
/* connect user functions to hoc names */
static VoidFunc hoc_intfunc[] = {
0,0
};
static Member_func _member_func[] = {
"loc", _hoc_loc_pnt,
"has_loc", _hoc_has_loc,
"get_loc", _hoc_get_loc_pnt,
"giveFractionG", _hoc_giveFractionG,
0, 0
};
#define giveFractionG giveFractionG_DCNsynGABA
extern double giveFractionG( _threadargsproto_ );
/* declare global and static user variables */
/* some parameters have upper and lower limits */
static HocParmLimits _hoc_parm_limits[] = {
0,0,0
};
static HocParmUnits _hoc_parm_units[] = {
"tauRise", "ms",
"tauFall", "ms",
"e", "mV",
"A", "microsiemens",
"B", "microsiemens",
"deprLevel", "1",
"i", "nA",
"g", "microsiemens",
0,0
};
static double A0 = 0;
static double B0 = 0;
static double delta_t = 0.01;
/* connect global user variables to hoc */
static DoubScal hoc_scdoub[] = {
0,0
};
static DoubVec hoc_vdoub[] = {
0,0,0
};
static double _sav_indep;
static void nrn_alloc(Prop*);
static void nrn_init(_NrnThread*, _Memb_list*, int);
static void nrn_state(_NrnThread*, _Memb_list*, int);
static void nrn_cur(_NrnThread*, _Memb_list*, int);
static void nrn_jacob(_NrnThread*, _Memb_list*, int);
static void _hoc_destroy_pnt(_vptr) void* _vptr; {
destroy_point_process(_vptr);
}
static int _ode_count(int);
static void _ode_map(int, double**, double**, double*, Datum*, double*, int);
static void _ode_spec(_NrnThread*, _Memb_list*, int);
static void _ode_matsol(_NrnThread*, _Memb_list*, int);
#define _cvode_ieq _ppvar[2]._i
static void _ode_matsol_instance1(_threadargsproto_);
/* connect range variables in _p that hoc is supposed to know about */
static const char *_mechanism[] = {
"7.7.0",
"DCNsynGABA",
"tauRise",
"tauFall",
"e",
"startDeprLevel",
0,
"deprLevel",
"i",
"g",
0,
"A",
"B",
0,
0};
extern Prop* need_memb(Symbol*);
static void nrn_alloc(Prop* _prop) {
Prop *prop_ion;
double *_p; Datum *_ppvar;
if (nrn_point_prop_) {
_prop->_alloc_seq = nrn_point_prop_->_alloc_seq;
_p = nrn_point_prop_->param;
_ppvar = nrn_point_prop_->dparam;
}else{
_p = nrn_prop_data_alloc(_mechtype, 24, _prop);
/*initialize range parameters*/
tauRise = 1;
tauFall = 1;
e = 0;
startDeprLevel = 1;
}
_prop->param = _p;
_prop->param_size = 24;
if (!nrn_point_prop_) {
_ppvar = nrn_prop_datum_alloc(_mechtype, 3, _prop);
}
_prop->dparam = _ppvar;
/*connect ionic variables to this model*/
}
static void _initlists();
/* some states have an absolute tolerance */
static Symbol** _atollist;
static HocStateTolerance _hoc_state_tol[] = {
0,0
};
static void _net_receive(Point_process*, double*, double);
extern Symbol* hoc_lookup(const char*);
extern void _nrn_thread_reg(int, int, void(*)(Datum*));
extern void _nrn_thread_table_reg(int, void(*)(double*, Datum*, Datum*, _NrnThread*, int));
extern void hoc_register_tolerance(int, HocStateTolerance*, Symbol***);
extern void _cvode_abstol( Symbol**, double*, int);
void _DCNsynGABA_reg() {
int _vectorized = 1;
_initlists();
_pointtype = point_register_mech(_mechanism,
nrn_alloc,nrn_cur, nrn_jacob, nrn_state, nrn_init,
hoc_nrnpointerindex, 1,
_hoc_create_pnt, _hoc_destroy_pnt, _member_func);
_mechtype = nrn_get_mechtype(_mechanism[1]);
_nrn_setdata_reg(_mechtype, _setdata);
#if NMODL_TEXT
hoc_reg_nmodl_text(_mechtype, nmodl_file_text);
hoc_reg_nmodl_filename(_mechtype, nmodl_filename);
#endif
hoc_register_prop_size(_mechtype, 24, 3);
hoc_register_dparam_semantics(_mechtype, 0, "area");
hoc_register_dparam_semantics(_mechtype, 1, "pntproc");
hoc_register_dparam_semantics(_mechtype, 2, "cvodeieq");
hoc_register_cvode(_mechtype, _ode_count, _ode_map, _ode_spec, _ode_matsol);
hoc_register_tolerance(_mechtype, _hoc_state_tol, &_atollist);
pnt_receive[_mechtype] = _net_receive;
pnt_receive_size[_mechtype] = 1;
hoc_register_var(hoc_scdoub, hoc_vdoub, hoc_intfunc);
ivoc_help("help ?1 DCNsynGABA D:/NEURON models/DCN LuthmanEtAl2011 Stimulation Ef/mod_files/DCNsynGABA.mod\n");
hoc_register_limits(_mechtype, _hoc_parm_limits);
hoc_register_units(_mechtype, _hoc_parm_units);
}
static int _reset;
static char *modelname = "";
static int error;
static int _ninits = 0;
static int _match_recurse=1;
static void _modl_cleanup(){ _match_recurse=1;}
static int _ode_spec1(_threadargsproto_);
/*static int _ode_matsol1(_threadargsproto_);*/
static int _slist1[2], _dlist1[2];
static int state(_threadargsproto_);
/*CVODE*/
static int _ode_spec1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {int _reset = 0; {
DA = - A / tauRise ;
DB = - B / tauFall ;
}
return _reset;
}
static int _ode_matsol1 (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
DA = DA / (1. - dt*( ( - 1.0 ) / tauRise )) ;
DB = DB / (1. - dt*( ( - 1.0 ) / tauFall )) ;
return 0;
}
/*END CVODE*/
static int state (double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) { {
A = A + (1. - exp(dt*(( - 1.0 ) / tauRise)))*(- ( 0.0 ) / ( ( - 1.0 ) / tauRise ) - A) ;
B = B + (1. - exp(dt*(( - 1.0 ) / tauFall)))*(- ( 0.0 ) / ( ( - 1.0 ) / tauFall ) - B) ;
}
return 0;
}
static void _net_receive (_pnt, _args, _lflag) Point_process* _pnt; double* _args; double _lflag;
{ double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
_thread = (Datum*)0; _nt = (_NrnThread*)_pnt->_vnt; _p = _pnt->_prop->param; _ppvar = _pnt->_prop->dparam;
if (_tsav > t){ extern char* hoc_object_name(); hoc_execerror(hoc_object_name(_pnt->ob), ":Event arrived out of order. Must call ParallelContext.set_maxstep AFTER assigning minimum NetCon.delay");}
_tsav = t; {
deprLevel = giveFractionG ( _threadargs_ ) ;
if (nrn_netrec_state_adjust && !cvode_active_){
/* discon state adjustment for cnexp case (rate uses no local variable) */
double __state = A;
double __primary = (A + _args[0] * factor ) - __state;
__primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tauRise ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tauRise ) - __primary );
A += __primary;
} else {
A = A + _args[0] * factor ;
}
if (nrn_netrec_state_adjust && !cvode_active_){
/* discon state adjustment for cnexp case (rate uses no local variable) */
double __state = B;
double __primary = (B + _args[0] * factor ) - __state;
__primary += ( 1. - exp( 0.5*dt*( ( - 1.0 ) / tauFall ) ) )*( - ( 0.0 ) / ( ( - 1.0 ) / tauFall ) - __primary );
B += __primary;
} else {
B = B + _args[0] * factor ;
}
} }
double giveFractionG ( _threadargsproto_ ) {
double _lgiveFractionG;
if ( notFirstSpike ) {
tSpikes [ 0 ] = tSpikes [ 1 ] ;
tSpikes [ 1 ] = t ;
ISI = tSpikes [ 1 ] - tSpikes [ 0 ] ;
freq = 1000.0 / ISI ;
relProbSS = 0.08 + 0.60 * exp ( - 2.84 * freq ) + 0.32 * exp ( - 0.02 * freq ) ;
tau = 2.0 + 2500.0 * exp ( - 0.274 * freq ) + 100.0 * exp ( - 0.022 * freq ) ;
relProb [ 1 ] = relProb [ 0 ] + ( relProbSS - relProb [ 0 ] ) * ( 1.0 - exp ( - ISI / tau ) ) ;
relProb [ 0 ] = relProb [ 1 ] ;
_lgiveFractionG = relProb [ 1 ] ;
}
else {
tSpikes [ 1 ] = t ;
relProb [ 0 ] = startDeprLevel ;
notFirstSpike = 1.0 ;
_lgiveFractionG = relProb [ 0 ] ;
}
return _lgiveFractionG;
}
static double _hoc_giveFractionG(void* _vptr) {
double _r;
double* _p; Datum* _ppvar; Datum* _thread; _NrnThread* _nt;
_p = ((Point_process*)_vptr)->_prop->param;
_ppvar = ((Point_process*)_vptr)->_prop->dparam;
_thread = _extcall_thread;
_nt = (_NrnThread*)((Point_process*)_vptr)->_vnt;
_r = giveFractionG ( _p, _ppvar, _thread, _nt );
return(_r);
}
static int _ode_count(int _type){ return 2;}
static void _ode_spec(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
_ode_spec1 (_p, _ppvar, _thread, _nt);
}}
static void _ode_map(int _ieq, double** _pv, double** _pvdot, double* _pp, Datum* _ppd, double* _atol, int _type) {
double* _p; Datum* _ppvar;
int _i; _p = _pp; _ppvar = _ppd;
_cvode_ieq = _ieq;
for (_i=0; _i < 2; ++_i) {
_pv[_i] = _pp + _slist1[_i]; _pvdot[_i] = _pp + _dlist1[_i];
_cvode_abstol(_atollist, _atol, _i);
}
}
static void _ode_matsol_instance1(_threadargsproto_) {
_ode_matsol1 (_p, _ppvar, _thread, _nt);
}
static void _ode_matsol(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node* _nd; double _v; int _iml, _cntml;
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
v = NODEV(_nd);
_ode_matsol_instance1(_threadargs_);
}}
static void initmodel(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt) {
int _i; double _save;{
A = A0;
B = B0;
{
double _ltp ;
if ( tauRise / tauFall > .9999 ) {
tauRise = .9999 * tauFall ;
}
A = 0.0 ;
B = 0.0 ;
_ltp = ( tauRise * tauFall ) / ( tauFall - tauRise ) * log ( tauFall / tauRise ) ;
factor = - exp ( - _ltp / tauRise ) + exp ( - _ltp / tauFall ) ;
factor = 1.0 / factor ;
notFirstSpike = 0.0 ;
}
}
}
static void nrn_init(_NrnThread* _nt, _Memb_list* _ml, int _type){
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_tsav = -1e20;
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v = _v;
initmodel(_p, _ppvar, _thread, _nt);
}
}
static double _nrn_current(double* _p, Datum* _ppvar, Datum* _thread, _NrnThread* _nt, double _v){double _current=0.;v=_v;{ {
g = ( B - A ) * deprLevel ;
i = g * ( v - e ) ;
}
_current += i;
} return _current;
}
static void nrn_cur(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; double _rhs, _v; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
_g = _nrn_current(_p, _ppvar, _thread, _nt, _v + .001);
{ _rhs = _nrn_current(_p, _ppvar, _thread, _nt, _v);
}
_g = (_g - _rhs)/.001;
_g *= 1.e2/(_nd_area);
_rhs *= 1.e2/(_nd_area);
#if CACHEVEC
if (use_cachevec) {
VEC_RHS(_ni[_iml]) -= _rhs;
}else
#endif
{
NODERHS(_nd) -= _rhs;
}
}
}
static void nrn_jacob(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml];
#if CACHEVEC
if (use_cachevec) {
VEC_D(_ni[_iml]) += _g;
}else
#endif
{
_nd = _ml->_nodelist[_iml];
NODED(_nd) += _g;
}
}
}
static void nrn_state(_NrnThread* _nt, _Memb_list* _ml, int _type) {
double* _p; Datum* _ppvar; Datum* _thread;
Node *_nd; double _v = 0.0; int* _ni; int _iml, _cntml;
#if CACHEVEC
_ni = _ml->_nodeindices;
#endif
_cntml = _ml->_nodecount;
_thread = _ml->_thread;
for (_iml = 0; _iml < _cntml; ++_iml) {
_p = _ml->_data[_iml]; _ppvar = _ml->_pdata[_iml];
_nd = _ml->_nodelist[_iml];
#if CACHEVEC
if (use_cachevec) {
_v = VEC_V(_ni[_iml]);
}else
#endif
{
_nd = _ml->_nodelist[_iml];
_v = NODEV(_nd);
}
v=_v;
{
{ state(_p, _ppvar, _thread, _nt);
}}}
}
static void terminal(){}
static void _initlists(){
double _x; double* _p = &_x;
int _i; static int _first = 1;
if (!_first) return;
_slist1[0] = &(A) - _p; _dlist1[0] = &(DA) - _p;
_slist1[1] = &(B) - _p; _dlist1[1] = &(DB) - _p;
_first = 0;
}
#if defined(__cplusplus)
} /* extern "C" */
#endif
#if NMODL_TEXT
static const char* nmodl_filename = "DCNsynGABA.mod";
static const char* nmodl_file_text =
"COMMENT by Johannes Luthman:\n"
"\n"
" This mechanism is based on DCNsyn.mod in this project. What's added here is\n"
" paired-pulse depression of the synapse's current, based on Shin et al, 2007\n"
" (PLOSone issue 5, e485, page 2), on which the changes in terminology\n"
" compared to DCNsyn.mod are based.\n"
" The depression is implemented via the change from [g = B - A] in DCNsyn.mod\n"
" to [g = (B - A) * deprLevel] here, and the calculation of deprLevel on each\n"
" input (NETRECEIVE).\n"
"\n"
"ENDCOMMENT\n"
"\n"
"NEURON {\n"
" POINT_PROCESS DCNsynGABA\n"
" NONSPECIFIC_CURRENT i\n"
" RANGE g, i, e, tauRise, tauFall, startDeprLevel, deprLevel\n"
"}\n"
"\n"
"UNITS {\n"
" (nA) = (nanoamp)\n"
" (mV) = (millivolt)\n"
"}\n"
"\n"
"PARAMETER {\n"
" tauRise = 1 (ms)\n"
" tauFall = 1 (ms)\n"
" e = 0 (mV)\n"
" startDeprLevel = 1 : set this in hoc to the depression level reached at \n"
" : steady state (use the equation for relProbSS, below) by the \n"
" : used GABAergic input frequency.\n"
"}\n"
"\n"
"ASSIGNED {\n"
" relProbSS (1) : This corresponds to Rss in the article (given in COMMENT at top).\n"
" relProb[2] (1) : This corresponds to Rn and Rn-1 in the article.\n"
" freq (1/s) : This corresponds to r in the article.\n"
" tau (ms)\n"
" tSpikes[2] (ms)\n"
" ISI (ms)\n"
" deprLevel (1) : level of synaptic depression. The conductance is\n"
" : multiplied by this factor in BREAKPOINT.\n"
" notFirstSpike (1) : boolean used to set up values of previous step on first\n"
" : call to this mechanism.\n"
"\n"
" v (mV)\n"
" i (nA)\n"
" g (microsiemens)\n"
" factor\n"
"}\n"
"\n"
"STATE {\n"
" A (microsiemens)\n"
" B (microsiemens)\n"
"}\n"
"\n"
"INITIAL {\n"
" LOCAL tp\n"
" if (tauRise/tauFall > .9999) {\n"
" tauRise = .9999*tauFall\n"
" }\n"
" A = 0\n"
" B = 0\n"
" tp = (tauRise*tauFall)/(tauFall - tauRise) * log(tauFall/tauRise)\n"
" factor = -exp(-tp/tauRise) + exp(-tp/tauFall)\n"
" factor = 1/factor\n"
"\n"
" notFirstSpike = 0\n"
"}\n"
"\n"
"BREAKPOINT {\n"
" : Here the conductance is updated each time step, while the NET_RECEIVE block\n"
" : is only invoked by being contacted by a NetCon object.\n"
" SOLVE state METHOD cnexp\n"
" g = (B - A) * deprLevel\n"
" i = g*(v - e) \n"
"}\n"
"\n"
"DERIVATIVE state {\n"
" A' = -A/tauRise\n"
" B' = -B/tauFall\n"
"}\n"
"\n"
"NET_RECEIVE(weight (microsiemens)) {\n"
" deprLevel = giveFractionG()\n"
" state_discontinuity(A, A + weight*factor)\n"
" state_discontinuity(B, B + weight*factor)\n"
"}\n"
"\n"
"FUNCTION giveFractionG() {\n"
" if (notFirstSpike) {\n"
" : Set the current spike to the present time, and calculate ISI as the\n"
" : difference in time from the last pass through here.\n"
" tSpikes[0] = tSpikes[1]\n"
" tSpikes[1] = t\n"
" ISI = tSpikes[1] - tSpikes[0]\n"
" freq = 1000 / ISI\n"
" \n"
" relProbSS = 0.08 + 0.60*exp(-2.84*freq) + 0.32*exp(-0.02*freq)\n"
" tau = 2 + 2500*exp(-0.274*freq) + 100*exp(-0.022*freq)\n"
" relProb[1] = relProb[0] + (relProbSS - relProb[0]) * (1-exp(-ISI/tau))\n"
" relProb[0] = relProb[1]\n"
"\n"
" giveFractionG = relProb[1]\n"
" } else {\n"
" tSpikes[1] = t\n"
" relProb[0] = startDeprLevel\n"
" notFirstSpike = 1\n"
" giveFractionG = relProb[0]\n"
" }\n"
"}\n"
;
#endif