NEURON {
POINT_PROCESS GRANULE_Nmda_det_vi
NONSPECIFIC_CURRENT i
RANGE Q10_diff,Q10_channel
RANGE g , ic
RANGE Cdur,Erev,T,Tmax
RANGE Rb, Ru, Rd, Rr, Ro, Rc,rb,gmax,RdRate
RANGE tau_1, tau_rec, tau_facil, U, u0
RANGE PRE
RANGE Used
RANGE MgBlock,v0_block,k_block
RANGE diffuse,Trelease,lamd, Diff, M, Rd, nd, syntype, gmax_factor
}
UNITS {
(nA) = (nanoamp)
(mV) = (millivolt)
(umho) = (micromho)
(mM) = (milli/liter)
(pS) = (picosiemens)
(nS) = (nanosiemens)
(um) = (micrometer)
PI = (pi) (1)
}
PARAMETER {
syntype
gmax_factor = 1
gmax = 18800 (pS) Q10_diff = 1.5
Q10_channel = 2.4
U = 0.42 (1) < 0, 1 >
tau_rec = 8 (ms) < 1e-9, 1e9 >
tau_facil = 5 (ms) < 0, 1e9 >
M = 21.515 Rd = 1.03 (um)
Diff = 0.223 (um2/ms)
tau_1 = 1 (ms) < 1e-9, 1e9 >
u0 = 0 (1) < 0, 1 >
Tmax = 1 (mM)
Cdur = 0.3 (ms)
Rb = 5 (/ms/mM) Ru = 0.1 (/ms) RdRate = 12e-3 (/ms) Rr = 9e-3 (/ms) Ro = 3e-2 (/ms) Rc = 0.966 (/ms) Erev = -3.7 (mV)
v0_block = -20 (mV) k_block = 13 (mV)
nd = 1
kB = 0.44 (mM)
diffuse = 1
lamd = 20 (nm)
celsius (degC)
}
ASSIGNED {
v (mV) i (nA) ic (nA) g (pS)
rb (/ms)
T (mM)
x
Trelease (mM)
tspike[100] (ms) PRE[100]
Mres (mM)
MgBlock
numpulses
tzero
gbar_Q10 (mho/cm2)
Q10 (1)
}
STATE {
C0 C1 C2 D O }
INITIAL {
rates(v)
C0 = 1
C1 = 0
C2 = 0
D = 0
O = 0
T = 0
numpulses=0
gbar_Q10 = Q10_diff^((celsius-30)/10)
Q10 = Q10_channel^((celsius-30)/10)
Mres = 1e3 * (1e3 * 1e15 / 6.022e23 * M) FROM i=1 TO 100 { PRE[i-1]=0 tspike[i-1]=0 } tspike[0]=1e12 (ms)
if(tau_1>=tau_rec){
printf("Warning tau_rec=tau_1+1e-5
}
}
FUNCTION imax(a,b) {
if (a>b) { imax=a }
else { imax=b }
}
FUNCTION diffusione(){
LOCAL DifWave,i,cntc,fi,aaa
DifWave=0
cntc=imax(numpulses-100,0)
FROM i=cntc TO numpulses{
fi=fmod(i,100)
tzero=tspike[fi]
if(t>tzero){
aaa = (-Rd*Rd/(4*Diff*(t-tzero)))
if(fabs(aaa)<699){
DifWave=DifWave+PRE[fi]*Mres*exp(aaa)/((4*PI*Diff*(1e-3)*lamd)*(t-tzero)) }else{
if(aaa>0){
DifWave=DifWave+PRE[fi]*Mres*exp(699)/((4*PI*Diff*(1e-3)*lamd)*(t-tzero)) }else{
DifWave=DifWave+PRE[fi]*Mres*exp(-699)/((4*PI*Diff*(1e-3)*lamd)*(t-tzero)) }
}
}
}
diffusione=DifWave
}
BREAKPOINT {
rates(v)
SOLVE kstates METHOD sparse
g = gmax * gbar_Q10 * O * gmax_factor
i = (1e-6) * g * (v - Erev) * MgBlock
ic = i
}
KINETIC kstates {
Trelease = diffusione()
rb = Rb * Trelease ~ C0 <-> C1 (rb*Q10,Ru*Q10) ~ C1 <-> C2 (rb*Q10,Ru*Q10) ~ C2 <-> D (RdRate*Q10,Rr*Q10)
~ C2 <-> O (Ro*Q10,Rc*Q10)
CONSERVE C0+C1+C2+D+O = 1
}
PROCEDURE rates(v(mV)) {
TABLE MgBlock DEPEND v0_block,k_block FROM -120 TO 30 WITH 150
MgBlock = 1 / ( 1 + exp ( - ( v - v0_block ) / k_block ) )
}
NET_RECEIVE(weight, on, nspike, tzero (ms),y, z, u, tsyn (ms)) {LOCAL fi
INITIAL {
y = 0
z = 0
u = u0
tsyn = t
nspike = 1
}
if (flag == 0) {
nspike = nspike + 1
if (!on) {
tzero = t
on = 1
z = z*exp( - (t - tsyn) / (tau_rec) ) z = z + ( y*(exp(-(t - tsyn)/tau_1) - exp(-(t - tsyn)/(tau_rec)))/((tau_1/(tau_rec))-1) ) y = y*exp(-(t - tsyn)/tau_1)
x = 1-y-z
if (tau_facil > 0) {
u = u*exp(-(t - tsyn)/tau_facil)
u = u + U * ( 1 - u )
} else { u = U }
y = y + x * u
T=Tmax*y
fi=fmod(numpulses,100)
PRE[fi]=y
tspike[fi] = t
numpulses=numpulses+1
tsyn = t
}
net_send(Cdur, nspike)
}
if (flag == nspike) {
tzero = t
T = 0
on = 0
}
}